Abstract

During the utilization of efficient optimization algorithms for axial compressors, the construction of a precise performance prediction surrogate model stands as a pivotal step. To reduce the cost of constructing the surrogate model while ensuring prediction accuracy, a novel multifidelity surrogate model based on flow field extraction (FFMFS) is proposed in this paper. In constructing FFMFS, two sets of samples with different fidelity are employed for model training, and six important flow field variables in axial compressors are extracted to modify the performance deviation between low-fidelity (LF) and high-fidelity (HF) results. Based on the proposed FFMFS, the aerodynamic performance of a 1.5-stage subsonic axial compressor is optimized, and the numerical method used in the optimization is validated on a 3.5-stage axial compressor test bench. During optimization, adjustments are made to the rotor blade profile, taking into account a total of 28 design variables and six objective functions. The FFMFS constructed for this compressor demonstrates a high prediction accuracy with a R2 value of 0.96, while also significantly reducing the sample generation cost. The optimization results show that the compressor efficiency and pressure ratio are significantly improved across the entire operating range. As a result of adjusting the rotor blade profile, the flow loss inside the compressor is evidently reduced. This work provides a new framework for constructing MFS with flow field information of axial compressors.

References

1.
Li
,
Z.
, and
Zheng
,
X.
,
2017
, “
Review of Design Optimization Methods for Turbomachinery Aerodynamics
,”
Prog. Aerosp. Sci.
,
93
, pp.
1
23
.10.1016/j.paerosci.2017.05.003
2.
Holland
,
J.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
, Ann Arbor,
MI
.
3.
Mirjalili
,
S.
,
Mirjalili
,
S. M.
, and
Lewis
,
A.
,
2014
, “
Grey Wolf Optimizer
,”
Adv. Eng. Software
,
69
, pp.
46
61
.10.1016/j.advengsoft.2013.12.007
4.
Kang
,
H.
, and
Kim
,
Y.
,
2022
, “
Machine Learning-Based Multi-Disciplinary Optimization of Transonic Axial Compressor Blade Considering Aeroelasticity
,”
ASME
Paper No. GT2022-80876.10.1115/GT2022-80876
5.
He
,
Y.
,
Sun
,
J.
,
Song
,
P.
, and
Wang
,
X.
,
2022
, “
Multi-Objective Efficient Global Optimization of Expensive Simulation-Based Problem in Presence of Simulation Failures
,”
Eng. Comput.
,
38
(
S3
), pp.
2001
2026
.10.1007/s00366-021-01351-5
6.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.10.2307/1268522
7.
Hu
,
H.
,
Song
,
Y.
,
Yu
,
J.
,
Liu
,
Y.
, and
Chen
,
F.
,
2022
, “
The Application of Support Vector Regression and Virtual Sample Generation Technique in the Optimization Design of Transonic Compressor
,”
Aerosp. Sci. Technol.
,
130
, p.
107814
.10.1016/j.ast.2022.107814
8.
Minisci
,
E.
, and
Vasile
,
M.
,
2013
, “
Robust Design of a Reentry Unmanned Space Vehicle by Multifidelity Evolution Control
,”
AIAA J.
,
51
(
6
), pp.
1284
1295
.10.2514/1.J051573
9.
Zou
,
Z.
,
Liu
,
J.
,
Zhang
,
W.
, and
Wang
,
P.
,
2016
, “
Shroud Leakage Flow Models and a Multi-Dimensional Coupling CFD (Computational Fluid Dynamics) Method for Shrouded Turbines
,”
Energy
,
103
, pp.
410
429
.10.1016/j.energy.2016.02.070
10.
Jonsson
,
I. M.
,
Leifsson
,
L.
,
Koziel
,
S.
,
Tesfahunegn
,
Y. A.
, and
Bekasiewicz
,
A.
,
2015
, “
Shape Optimization of Trawl-Doors Using Variable-Fidelity Models and Space Mapping
,”
Procedia Comput. Sci.
,
51
, pp.
905
913
.10.1016/j.procs.2015.05.223
11.
Lv
,
L.
,
Zong
,
C.
,
Zhang
,
C.
,
Song
,
X.
, and
Sun
,
W.
,
2021
, “
Multi-Fidelity Surrogate Model Based on Canonical Correlation Analysis and Least Squares
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021705
.10.1115/1.4047686
12.
Pretsch
,
L.
,
Arsenyev
,
I.
,
Czech
,
C.
, and
Duddeck
,
F.
,
2023
, “
Interdisciplinary Design Optimization of Compressor Blades Combining Low- and High-Fidelity Models
,”
Struct. Multidiscip. Optim.
,
66
(
4
), p.
70
.10.1007/s00158-023-03516-w
13.
Kennedy
,
M. C.
, and
O'hagan
,
A.
,
2000
, “
Predicting the Output From a Complex Computer Code When Fast Approximations Are Available
,”
Biometrika
,
87
(
1
), pp.
1
13
.10.1093/biomet/87.1.1
14.
Zhang
,
Y.
,
Kim
,
N. H.
,
Park
,
C.
, and
Haftka
,
R. T.
,
2018
, “
Multifidelity Surrogate Based on Single Linear Regression
,”
AIAA J.
,
56
(
12
), pp.
4944
4952
.10.2514/1.J057299
15.
Cai
,
X.
,
Qiu
,
H.
,
Gao
,
L.
, and
Shao
,
X.
,
2017
, “
Metamodeling for High Dimensional Design Problems by Multi-Fidelity Simulations
,”
Struct. Multidiscip. Optim.
,
56
(
1
), pp.
151
166
.10.1007/s00158-017-1655-y
16.
Mondal
,
S.
,
Joly
,
M. M.
, and
Sarkar
,
S.
,
2019
, “
Multi-Fidelity Global-Local Optimization of a Transonic Compressor Rotor
,”
ASME
Paper No. GT2019-91778.10.1115/GT2019-91778
17.
Baar
,
J.
,
Leylek
,
Z.
,
Habib
,
A.
,
Neely
,
A. J.
, and
Ray
,
T.
,
2017
, “
Multi-Fidelity Efficient Global Optimisation of the Geometry of a Transonic Axial Compressor
,”
Proceedings of the 27th ISABE Conference
, Manchester, UK, Sept. 3–8, p.
22544
.https://www.researchgate.net/publication/267568912_Multi-fidelity_Design_Optimisation_of_a_Transonic_Compressor_Rotor
18.
Ji
,
C.
,
Wang
,
Z.
, and
Xi
,
G.
,
2022
, “
Computer 3D Vision-Aided Full-3D Optimization of a Centrifugal Impeller
,”
ASME J. Turbomach.
,
144
(
9
), p.
091011
.10.1115/1.4053744
19.
Wang
,
X.
,
Sun
,
J.
,
Benini
,
E.
,
Song
,
P.
, and
He
,
Y.
,
2023
, “
An Overall Blockage Attenuation-Based Aerodynamic Performance and Stability Design Optimization Method for Transonic Axial Flow Compressors
,”
Int. J. Numer. Methods Heat Fluid Flow
,
33
(
5
), pp.
1853
1885
.10.1108/HFF-07-2022-0437
20.
Wójtowicz
,
R.
,
Lipin
,
A. A.
, and
Talaga
,
J.
,
2014
, “
On the Possibility of Using of Different Turbulence Models for Modeling Flow Hydrodynamics and Power Consumption in Mixing Vessels With Turbine Impellers
,”
Theor. Found. Chem. Eng.
,
48
(
4
), pp.
360
375
.10.1134/S0040579514020146
21.
Liu
,
Y.
,
Gong
,
W.
,
Liang
,
L.
, and
Qi
,
W.
,
2023
, “
A Correction Method for the Effects of Reynolds Number, Roughness, and Tip Clearance on Geometric Scaling of Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
145
(
10
), p.
101004
.10.1115/1.4063229
22.
Celik
,
I.
,
Ghia
,
U.
, and
Roache
,
P.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
23.
Lai
,
X.
,
He
,
X.
,
Pang
,
Y.
,
Zhang
,
F.
,
Zhou
,
D.
,
Sun
,
W.
, and
Song
,
X.
,
2023
, “
A Scalable Digital Twin Framework Based on a Novel Adaptive Ensemble Surrogate Model
,”
ASME J. Mech. Des.
,
145
(
2
), p.
021701
.10.1115/1.4056077
24.
Hanna
,
B. N.
,
Dinh
,
N. T.
,
Youngblood
,
R. W.
, and
Bolotnov
,
I. A.
,
2020
, “
Machine-Learning Based Error Prediction Approach for Coarse-Grid Computational Fluid Dynamics (CG-CFD)
,”
Prog. Nucl. Energy
,
118
, p.
103140
.10.1016/j.pnucene.2019.103140
25.
Wu
,
Y.
,
Wang
,
B.
,
Fu
,
Y.
, and
Liu
,
J.
,
2017
, “
Research Progress of Corner Separation in Axial-Flow Compressor
,”
Acta Aeronaut. Astronaut. Sin.
,
38
(
9
), pp.
1
22
.10.7527/S1000-6893.2017.620974
26.
Benini
,
E.
,
Biollo
,
R.
, and
Ponza
,
R.
,
2011
, “
Efficiency Enhancement in Transonic Compressor Rotor Blades Using Synthetic Jets: A Numerical Investigation
,”
Appl. Energy
,
88
(
3
), pp.
953
962
.10.1016/j.apenergy.2010.08.006
27.
Liu
,
B.
,
Ma
,
N.
,
Yang
,
X.
, and
Cao
,
Z.
,
2014
, “
Deviation Angle Models Suitable for Wider Range of Blade Profile Camber in Axial-Flow Compressor
,”
J. Aerosp. Power
,
29
(
8
), pp.
1824
1831
.10.13224/j.cnki.jasp.2014.08.010
28.
König
,
W. M.
,
Hennecke
,
D. K.
, and
Fottner
,
L.
,
1996
, “
Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part I—A Model for Subsonic Flow
,”
ASME J. Turbomach.
,
118
(
1
), pp.
73
80
.10.1115/1.2836609
29.
Ju
,
Y.
,
Qin
,
R.
,
Kipouros
,
T.
,
Parks
,
G.
, and
Zhang
,
C.
,
2016
, “
A High-Dimensional Design Optimisation Method for Centrifugal Impellers
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
230
(
3
), pp.
272
288
.10.1177/0957650915626274
30.
Zhang
,
S.
,
Pang
,
Y.
,
Liang
,
P.
, and
Song
,
X.
,
2022
, “
On the Ensemble of Surrogate Models by Minimum Screening Index
,”
ASME J. Mech. Des.
,
144
(
7
), p.
071707
.10.1115/1.4054243
31.
Hu
,
K.
,
Ju
,
Y.
,
Feng
,
Y.
, and
Zhang
,
C.
,
2022
, “
A Dimension Reduction-Based Multidisciplinary Design Optimization Method for High Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
144
(
9
), p.
091011
.10.1115/1.4055186
32.
Kamenik
,
J.
,
Stramacchia
,
M.
,
Toal
,
D. J. J.
,
Keane
,
A. J.
, and
Bates
,
R.
,
2017
, “
Axial Compressor Rotor Optimization Using a Novel Ensemble of Surrogates-Based Infill Criterion
,”
ASME
Paper No. GTINDIA2017-4516.10.1115/GTINDIA2017-4516
33.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
You do not currently have access to this content.