Abstract

This study applies a novel strain-energy based fatigue life prediction method to low cycle fatigue (LCF) data additive manufactured (AM) Inconel 718 round dog-bones, specifically focusing on cycles to failure less than 105. The objective is to forecast high cycle fatigue (HCF, 106107) and very high cycle fatigue (VHCF >107), aiming to approximate stress versus cycles to failure (SN) behavior and the inherent variability in the fatigue life of the material system. This tool is motivated by the need to characterize an expanding and diverse array of materials produced by additive manufacturing methods, process parameter modifications, and optimizations, which can significantly impact fatigue life and overall structural reliability. The fatigue life prediction method achieves this by generating a fatigue life distribution as a function of stress amplitude. Bayesian statistical inference and stochastic sampling techniques are employed iteratively for each test data point, incorporating stress, cycles to failure, and total strain-energy dissipated leading to fatigue failure. Experimental LCF fatigue data are acquired using a standard axial servohydraulic load frame equipped with an axial extensometer for strain and strain-energy data collection. HCF and VHCF data is generated utilizing an ultrasonic fatigue test frame capable of cycling at 20 kHz. The fatigue data obtained from both servohydraulic and ultrasonic fatigue testing are presented and compared. The energy-based fatigue life prediction framework, utilizing only LCF data, is deployed to forecast HCF and VHCF fatigue behavior for AM Inconel 718 fatigue. The HCF and VHCF data generated are then used to validate the forecasts generated from the novel energy-based fatigue life prediction method. Comparisons are made against Random Fatigue Limit curve estimations to assess the effectiveness and accuracy of the proposed methodology.

References

1.
James
,
M.
,
2024
, “
Additive Manufacturing and the U.S. Army's Improved Turbine Engine
,” accessed Oct. 20, 2023, https://www.army.mil/article/248519/additive_manufacturing_and_the_u_s_armys_improved_turbine_engine
2.
Thomas
,
D.
,
2016
, “
Costs, Benefits, and Adoption of Additive Manufacturing: A Supply Chain Perspective
,”
Int. J. Manuf., Technol.
,
85
(
5–8
), pp.
1857
1876
.10.1007/s00170-015-7973-6
3.
Thomas
,
D.
, and
Gilbert
,
S.
,
2014
, “
Costs and Cost Effectiveness of Additive Manufacturing
,”
U.S. Department of Commerce, National Institute of Standards and Technology
, Report No. 1176.
4.
Atzeni
,
E.
, and
Salmi
,
A.
,
2012
, “
Economics of Additive Manufacturing for End-Usable Metal Parts
,”
Int. J. Addit. Manuf. Technol.
,
62
(
9–12
), pp.
1147
1155
.10.1007/s00170-011-3878-1
5.
Tullis
,
R.
,
Dunn
,
A.
,
Young
,
D.
,
Klingbeil
,
N. W.
, and
Gockel
,
J. E.
,
2023
, “
Additive Manufacturing Bulk Parameter's Influence on Surface Roughness, Microstructure, and Fatigue
,”
JOM
,
75
(
6
), pp.
1975
1981
.10.1007/s11837-023-05779-6
6.
Salzbrenner
,
B.
,
Boyce
,
B.
,
Jared
,
B. H.
,
Rodelas
,
J.
, and
Laing
,
J. R.
,
2016
, “
Defect Characterization for Material Assurance in Metal Additive Manufacturing
,” Report No. SAND2016-1040R, 619135.
7.
Seifi
,
M.
,
Salem
,
A.
,
Beuth
,
J.
,
Harrysson
,
O.
, and
Lewandowski
,
J. J.
,
2016
, “
Overview of Materials Qualification Needs for Metal Additive Manufacturing
,”
JOM
,
68
(
3
), pp.
747
764
.10.1007/s11837-015-1810-0
8.
Verma
,
R.
, and
Kaushal
,
G.
,
2019
, “
State of the Art of Powder Bed Fusion Additive Manufacturing: A Review
,” L. Kumar, P. Pandey, and D. Wimpenny, eds., 3D Printing and Additive Manufacturing Technologies, Springer, Singapore, pp.
269
279
.10.1007/978-981-13-0305-0_23
9.
Celli
,
D.
,
2021
, “
Stochastic Energy-Based Fatigue Life Prediction Framework Utilizing Bayesian Statistical Inference
,”
Ph.D. thesis
,
The Ohio State University
, Columbus, OH.https://www.proquest.com/openview/004221af8a0f37edbaf673430933d229/1?pq-origsite=gscholar&cbl=18750&diss=y
10.
Celli
,
D.
,
Shen
,
M.
,
Scott-Emuakpor
,
O.
,
Holycross
,
C.
, and
George
,
T.
,
2020
, “
Stochastic Fatigue Life Prediction Based on a Reduced Data Set
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031017
.10.1115/1.4045065
11.
Jasper
,
T. M.
,
1923
, “
The Value of the Energy Relation in the Testing of Ferrous Metals at Varying Ranges of Stress and at Intermediate and High Temperatures
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
,
46
(
274
), pp.
609
627
.10.1080/14786442308634287
12.
Enomoto
,
N.
,
1955
, “
On Fatigue Tests Under Progressive Stress
,”
Am. Soc. Test. Mater.
,
55
, pp.
903
917
.
13.
Shen
,
M.
, and
Akanda
,
S.
,
2016
, “
A Modified Closed Form Energy-Based Framework for Fatigue Life Assessment for Aluminum 6061-T6: Strain Range Approach
,”
Int. J. Damage Mech.
,
25
(
5
), pp.
661
671
.10.1177/1056789516635726
14.
Scott-Emuakpor
,
O.
,
Shen
,
M.-H. H.
,
George
,
T.
,
Cross
,
C. J.
, and
Calcaterra
,
J.
,
2007
, “
Development of an Improved High Cycle Fatigue Criterion
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
162
169
.10.1115/1.2360599
15.
Ozaltun
,
H.
,
Seidt
,
J. D.
,
Shen
,
M.-H. H.
,
George
,
T. J.
, and
Cross
,
C. J.
,
2009
, “
An Energy-Based Method for Uni-Axial Fatigue Life Calculation
,”
ASME
Paper No. GT2009-59512.10.1115/GT2009-59512
16.
Scott-Emuakpor
,
O.
,
George
,
T.
,
Cross
,
C.
,
Wertz
,
J.
, and
Shen
,
M.-H. H.
,
2010
, “
Validation of a Multi-Axial Fatigue Life Prediction Using Maximum Shear Experimental Results
,”
ASME
Paper No. GT2010-22547.10.1115/GT2010-22547
17.
Holycross
,
C.
,
Shen
,
H.
,
Scott-Emuakpor
,
O.
, and
George
,
T.
,
2015
, “Extension of An
Energy-Based Life Prediction Method To Low and Combined Cycle Fatigue Regimes
,”
J. Strain Anal. Eng. Des.
,
50
(
2
), pp.
138
147
.10.1177/0309324714547608
18.
Box
,
G.
, and
Tiao
,
G.
,
Bayesian Inference in Statistical Analysis
,
Addison-Wesley Publishing Company
, Reading, MA.
19.
Pascual
,
F.
, and
Meeker
,
W.
,
1999
, “
Estimating Fatigue Curves With the Random Fatigue-Limit Model
,”
Technometrics
,
41
(
4
), pp.
277
289
.10.1080/00401706.1999.10485925
20.
Dieter
,
G.
,
1986
,
Mechanical Metallurgy
,
McGraw-Hill
, New York.
21.
Celli
,
D.
,
Shen
,
M.
,
Scott-Emuakpor
,
O.
, and
George
,
T.
, “
Rapid Characterization of Fatigue Performance With Application to Additive Manufactured Components
,”
ASME
Paper No. GT2020-14727.10.1115/GT2020-14727
22.
Babuška
,
I.
,
Sawlan
,
Z.
,
Scavino
,
M.
,
Szabó
,
B.
, and
Tempone
,
R.
,
2016
, “
Bayesian Inference and Model Comparison for Metallic Fatigue Data
,”
Comput. Methods Appl. Mech. Eng.
,
304
(
1
), pp.
171
196
.10.1016/j.cma.2016.02.013
23.
Dourado
,
A.
,
Irmak
,
F.
,
Viana
,
F.
, and
Gordon
,
A.
,
2019
, “
A Bayesian Framework for Estimation of Strain Life Lower Bounds and Its Application to IN617
,”
ASME
Paper No. GT2019-91958.10.1115/GT2019-91958
24.
2020
, “
Standard Test Methods for Tension Testing of Metallic Materials
,”
ASTM International
, West Conshohocken, PA, Paper No. ASTM E8-20.
25.
2015
, “
Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials
,”
ASTM International
, West Conshohocken, PA, Paper No. ASTM E466-15.
26.
SAE International,
2016
, “
MS 5663N Nickel Alloy, Corrosion and Heat-Resistant, Bars, Forgings, and Rings 52.5Ni - 19Cr - 3.0Mo - 5.1Cb (Nb) - 0.90Ti - 0.50Al - 18Fe Consumable Electrode or Vacuum Induction Melted 1775 °F (968 °C) Solution and Precipitation Heat Treated
,”
SAE International
, Warrendale, PA.
27.
Celli
,
D. A.
,
Scott-Emuakpor
,
O.
,
Warner
,
J.
, and
George
,
T.
,
2023
, “
Investigation of Self-Heating During Ultrasonic Fatigue Testing and Effect on Very High Cycle Fatigue Behavior of Titanium 6Al-4V
,”
ASME J. Eng. Gas Turbines Power
,
145
(
3
), p.
031016
.10.1115/1.4055726
28.
Nicholas
,
T.
,
2002
, “
Step Loading for Very High Cycle Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
25
(
8–9
), pp.
861
869
.10.1046/j.1460-2695.2002.00555.x
29.
Maxwell
,
D.
, and
Nicholas
,
T.
,
2002
, “
A Rapid Method for Generation of a Haigh Diagram for High Cycle Fatigue
,” Report No.
STP14974S
.10.1520/STP14974S
30.
USAF
,
2002
, “
Engine Structural Integrity Program (ENSIP)
,” United States Air Force, Washington, DC, Report No.
MIL-HDBK-1783B
.http://everyspec.com/MIL-HDBK/MIL-HDBK-1500-1799/MIL_HDBK_1783B_1924/
You do not currently have access to this content.