Abstract

A common problem for gas turbine engines after ingesting atmospheric dust is compressor fouling, where small particles adhere to component surfaces. By sampling components from both a test engine and a service engine, deposits that are hard and sintered were observed to have formed on the leading edges of compressor blades and stators reprofiling their leading-edge geometry. Sectioning of the components showed that the deposits consist of layers of different chemical compositions and that new minerals have crystallized within the deposits. The change in geometry caused by the deposits suggests that they negatively affect the operating incidence range, surface pressure distribution, and profile losses from the design intent of the original component, changing the compressor working line and reducing surge margin, efficiency, and pressure ratio.

References

1.
Clarkson
,
R. J.
, and
Simpson
,
H.
,
2017
, “
Maximising Airspace Use During Volcanic Eruptions: Matching Engine Durability Against Ash Cloud Occurrence
,” Specialists Meeting on Impact of Volcanic Ash Clouds on Military Operations, Vilnius, Lithuania, Apr., Vol.
1
, No.
1, Paper No.
NATO STO AVT-272
.https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-AVT-272/MP-AVT-272-17.pdf
2.
Alqallaf
,
J.
,
Ali
,
N.
,
Teixeira
,
J. A.
, and
Addali
,
A.
,
2020
, “
Solid Particle Erosion Behaviour and Protective Coatings for Gas Turbine Compressor Blades – A Review
,”
Processes
,
8
(
8
), p.
984
.10.3390/pr8080984
3.
Chirayath
,
E.
,
Xu
,
H.
,
Yang
,
X.
, and
Kunz
,
R.
,
2023
, “
Full Stage Axial Compressor Performance Modeling Incorporating the Effects of Blade Damage Due to Particle Ingestion
,”
ASME J. Turbomach.
,
145
(
9
), p.
091001
.10.1115/1.4062397
4.
Dunn
,
M. G.
,
Padova
,
C.
, and
Adams
,
R. M.
,
1987
, “
Operation Of Gas Turbine Engines In Dust-Laden Environments
,”
Agard Conference Proceeding No. 421
,
Paris, France
, May 4–8, pp. 8-1–8-14.
5.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.10.1115/1.3066315
6.
Walton
,
K.
,
Blunt
,
L.
,
Fleming
,
L.
,
Goodhand
,
M.
, and
Lung
,
H.
,
2014
, “
Areal Parametric Characterisation of Ex-Service Compressor Blade Leading Edges
,”
Wear
,
321
, pp.
79
86
.10.1016/j.wear.2014.10.007
7.
Sofia
,
A.
,
2006
, “
The Effect of Wakes on Leading Edge Loss
,” M.S. thesis,
ETH Zürich. Zürich
,
Switzerland
.
8.
Goodhand
,
M. N.
,
2010
, “
Compressor Leading Edges
,” Ph.D. thesis,
University of Cambridge
,
Cambridge, UK
.
9.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.10.1115/1.1791281
10.
Kurz
,
R.
,
Musgrove
,
G.
, and
Brun
,
K.
,
2017
, “
Experimental Evaluation of Compressor Blade Fouling
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032601
.10.1115/1.4034501
11.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Deposition Pattern Analysis On a Fouled Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081006
.10.1115/1.4049510
12.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.10.1115/1.2219763
13.
Suman
,
A.
,
Zanini
,
N.
, and
Pinelli
,
M.
, “
Design of an Innovative Experimental Rig for the Study of Deposition Phenomena in Axial Compressors
,”
ASME
Paper No. GT2023-103408.10.1115/GT2023-103408
14.
Engelbrecht
,
J. P.
, and
Derbyshire
,
E.
,
2010
, “
Airborne Mineral Dust
,”
Elements
,
6
(
4
), pp.
241
246
.10.2113/gselements.6.4.241
15.
Elms
,
J.
,
Pawley
,
A.
,
Bojdo
,
N.
,
Jones
,
M.
, and
Clarkson
,
R.
,
2021
, “
Formation of High-Temperature Minerals From an Evaporite-Rich Dust in Gas Turbine Engine Ingestion Tests
,”
ASME J. Turbomach.
,
143
(
6
), p.
061003
.10.1115/1.4050146
16.
Thomas
,
T. R.
,
1981
, “
Characterization of Surface Roughness
,”
Precis. Eng.
,
3
(
2
), pp.
97
104
.10.1016/0141-6359(81)90043-X
17.
Bouris
,
D.
,
Kubo
,
R.
,
Hirata
,
H.
, and
Nakata
,
Y.
,
2002
, “
Numerical Comparative Study of Compressor Rotor and Stator Blade Deposition Rates
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
608
616
.10.1115/1.1454113
18.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Ruggero Spina
,
P.
,
2016
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012603
.10.1115/1.4031205
19.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
,
2011
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hotpath
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
201
211
.10.1016/j.ijheatfluidflow.2010.10.006
20.
Schäffler
,
A.
,
1980
, “
Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors
,”
ASME J. Eng. Gas Turbines Power
,
102
(
1
), pp.
5
12
.10.1115/1.3230232
21.
Gilge
,
P.
,
Kellersmann
,
A.
,
Friedrichs
,
J.
, and
Seume
,
J. R.
,
2019
, “
Surface Roughness of Real Operationally Used Compressor Blade and Blisk
,”
Proc. Inst. Mech. Eng., Part G
,
233
(
14
), pp.
5321
5330
.10.1177/0954410019843438
22.
Alqallaf
,
J.
, and
Teixeira
,
J. A.
,
2021
, “
Blade Roughness Effects on Compressor and Engine Performance—A CFD and Thermodynamic Study
,”
Aerospace
,
8
(
11
), p.
330
.10.3390/aerospace8110330
23.
Bojdo
,
N.
,
Ellis
,
M.
,
Filippone
,
A.
,
Jones
,
M.
, and
Pawley
,
A.
,
2019
, “
Particle-Vane Interaction Probability in Gas Turbine Engines
,”
ASME J. Turbomach.
,
141
(
9
), p.
091010
.10.1115/1.4043953
24.
Whitaker
,
S. M.
,
Peterson
,
B.
,
Miller
,
A. F.
, and
Bons
,
J. P.
, “
The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry
,”
ASME
Paper No. GT2016-57413.10.1115/GT2016-57413
You do not currently have access to this content.