Abstract

Although cyclic symmetry theory was initially developed for linear structures, the introduction of nonlinear forces on internal nodes of the fundamental sector does not affect the methodology. Nevertheless, the method is ill-suited when nonlinear forces are applied at the cyclic boundary. The purpose of this paper is to provide a complement to this theory and to propose a cyclic symmetry formulation for structures undergoing nonlinear forces at their cyclic boundary. A complete nonlinear cyclic formulation for such systems is derived in this work. The advantages of such an approach lie in the reduction of computational costs using the cyclic symmetry properties. The methodology is employed to characterize the dynamics of several mechanical systems. First, it is validated on simplified models of a cyclic system. Two nonlinearities are considered: a one-dimensional friction contact interface and a cubic nonlinearity. Both cases exhibit very different dynamics behaviors; yet, the results obtained with the new strategy are shown to be very accurate. Once the approach is validated, it is employed on an industrial finite element model of turbine bladed disk featuring contact interfaces between the blades' shrouds. The capability of the method to handle large systems is thus demonstrated. For all cases, periodic excitation are applied following either a traveling or standing wave shape for different engines orders.

References

1.
Valid
,
R.
, and
Ohayon
,
R.
,
1985
, “
Théorie et Calcul Statique et Dynamique Des Structures à Symétries Cycliques
,”
La Recherche Aérospatiale
, 4, pp.
251
263
.
2.
MacNeal
,
R. H.
, Harder, R. L., and Mason, J. B.,
1973
, “
NASTRAN Cyclic Symmetry Capability. [Application to Solid Rocket Propellant Grains and Space Antennas]
,”
NASA Goddard Space Flight Center
, Greenbelt, MD, No. 19740006491.https://ntrs.nasa.gov/api/citations/19740006491/downloads/19740006491.pdf
3.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
4.
Petrov
,
E. P.
,
2004
, “
A Method for Use of Cyclic Symmetry Properties in Analysis of Nonlinear Multiharmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
126
(
1
), pp.
175
183
.10.1115/1.1644558
5.
Quaegebeur
,
S.
,
Chouvion
,
B.
, and
Thouverez
,
F.
,
2020
, “
Model Reduction of Nonlinear Cyclic Structures Based on Their Cyclic Symmetric Properties
,”
Mech. Syst. Signal Process.
,
145
, p.
106970
.10.1016/j.ymssp.2020.106970
6.
Wei
,
S.-T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry Part I: Free Vibrations
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
110
(
4
), pp.
429
438
.10.1115/1.3269547
7.
Tran
,
D.-M.
,
2009
, “
Component Mode Synthesis Methods Using Partial Interface Modes: Application to Tuned and Mistuned Structures With Cyclic Symmetry
,”
Comput. Struct.
,
87
(
17–18
), pp.
1141
1153
.10.1016/j.compstruc.2009.04.009
8.
Krack
,
M.
,
Panning-von Scheidt
,
L.
,
Wallaschek
,
J.
,
Siewert
,
C.
, and
Hartung
,
A.
,
2013
, “
Reduced Order Modeling Based on Complex Nonlinear Modal Analysis and Its Application to Bladed Disks With Shroud Contact
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102502
.10.1115/1.4025002
9.
Battiato
,
G.
,
2021
, “
Self-Adaptive Macroslip Array for Friction Force Prediction in Contact Interfaces With Non-Conforming Meshes
,”
Nonlinear Dyn.
,
106
(
1
), pp.
745
764
.10.1007/s11071-021-06888-0
10.
Kan
,
X.
,
Wang
,
K.
, and
Zhao
,
B.
,
2023
, “
Dynamic Characteristics of Vibration Localization of Mistuned Bladed Disk Due to Shroud and Blade Damages
,”
J. Low Freq. Noise, Vib. Active Control
,
43
(
1
), pp.
405
417.
10.1177/14613484231209747
11.
Ahmed
,
R.
,
Firrone
,
C. M.
, and
Zucca
,
S.
,
2023
, “
A Test Rig for the Full Characterization of the Dynamics of Shrouded Turbine Blades
,”
Mech. Syst. Signal Process.
,
189
, p.
110080
.10.1016/j.ymssp.2022.110080
12.
Siewert
,
C.
,
Panning
,
L.
,
Wallaschek
,
J.
, and
Richter
,
C.
,
2010
, “
Multiharmonic Forced Response Analysis of a Turbine Blading Coupled by Nonlinear Contact Forces
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082501
.10.1115/1.4000266
13.
Georgiades
,
F.
,
Peeters
,
M.
,
Kerschen
,
G.
,
Golinval
,
J. C.
, and
Ruzzene
,
M.
,
2009
, “
Modal Analysis of a Nonlinear Periodic Structure With Cyclic Symmetry
,”
AIAA J.
,
47
(
4
), pp.
1014
1025
.10.2514/1.40461
14.
Heinze
,
T.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2020
, “
Global Detection of Detached Periodic Solution Branches of Friction-Damped Mechanical Systems
,”
Nonlinear Dyn.
,
99
(
3
), pp.
1841
1870
.10.1007/s11071-019-05425-4
15.
Quaegebeur
,
S.
,
Chouvion
,
B.
,
Thouverez
,
F.
, and
Berthe
,
L.
,
2020
, “
Energy Transfer Between Nodal Diameters of Cyclic Symmetric Structures Exhibiting Polynomial Nonlinearities: Cyclic Condition and Analysis
,”
Mech. Syst. Signal Process.
,
139
, p.
106604
.10.1016/j.ymssp.2019.106604
16.
Krack
,
M.
, and
Gross
,
J.
,
2019
, “
Theory of Harmonic Balance
,”
Harmonic Balance for Nonlinear Vibration Problems
,
Springer International Publishing
,
Cham
, Switzerland, pp.
11
46
.
17.
Mitra
,
M.
, and
Epureanu
,
B. I.
,
2019
, “
Dynamic Modeling and Projection-Based Reduction Methods for Bladed Disks With Nonlinear Frictional and Intermittent Contact Interfaces
,”
ASME Appl. Mech. Rev.
,
71
(
5
), p.
050803
.10.1115/1.4043083
18.
Poudou
,
O.
, and
Pierre
,
C.
, “
Hybrid Frequency-Time Domain Methods for the Analysis of Complex Structural Systems With Dry Friction Damping
,”
AIAA
Paper No. 2003-1411.10.2514/6.2003-1411
19.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
20.
Quinn
,
D. D.
,
2004
, “
A New Regularization of Coulomb Friction
,”
ASME J. Vib. Acoust.
,
126
(
3
), pp.
391
397
.10.1115/1.1760564
21.
Legrand
,
M.
, and
Pierre
,
C.
,
2023
, “
A Compact, Equality-Based Weighted Residual Formulation for Periodic Solutions of Systems Undergoing Frictional Occurrences
,”
J. Struct. Dyn.
, Issue 2.10.25518/2684-6500.190
22.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jézéquel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency–Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.10.1016/S0022-460X(02)01447-5
23.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J. C.
,
2009
, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.10.1016/j.ymssp.2008.04.003
24.
Seydel
,
R.
,
2010
,
Practical Bifurcation and Stability Analysis
, 3rd ed.,
Interdisciplinary Applied Mathematics, Springer-Verlag
,
New York
.
25.
Kuznetsov
,
Y.
,
2004
,
Elements of Applied Bifurcation Theory
, 3rd ed.,
Applied Mathematical Sciences, Springer-Verlag
,
New York
.
26.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
You do not currently have access to this content.