Abstract

Creep deformation in turbomachinery applications is a highly nonlinear phenomenon where ±15 °C may halve or double the average rupture life. Even in well-controlled laboratory conditions, this stochastic nature means that identical tests may differ by a factor of two. Analysts using implicit finite element user creep subroutines may not appreciate the uncertainty of their solution, or the design changes required to account for uncertainty in either the boundary conditions or the solution itself. Designing to a maximum strain limit does not consider the sudden acceleration of tertiary creep rates. Applying a time factor may extend the simulation time by multiple factors. This paper presents a methodology where two estimations of creep damage are made in parallel to the creep simulation at actual operating temperatures. These two estimations consider the predicted change in stress relaxation, at higher or lower temperatures, to estimate the temperature change required to reach the onset of creep, at any given node in the model, and at any given time in the analysis. This margin calculation is expanded to consider the uncertainty in creep prediction. A time-based scatter factor is incorporated into the temperature margin calculation to provide a minimum temperature margin that includes model uncertainty. The analyst can also consider the uncertainty of the temperature prediction and boundary conditions to produce a robust creep prediction in a real-world simulation. The methodology is validated through the finite element analysis (FEA) of example cases and applied to a creep-limited second stage turbine blade.

References

1.
Grin
,
E. A.
,
2018
, “
Topical Problems Associated With Reliability and Safety of Equipment at Thermal Power Stations
,”
Therm. Eng.
,
65
(
8
), pp.
515
23
.10.1134/S0040601518080025
2.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
Time-Temperature Relationships for Rupture and Creep Stresses
,”
Trans. ASME
,
74
(
5
), p. 765–771.10.1115/1.4015909
3.
George
,
B.
, and
Muthuveerappan
,
N.
,
2020
, “
Life Assessment of a High Temperature Probe Designed for Performance Evaluation and Health Monitoring of an Aero Gas Turbine Engine
,”
Inter. J. Turbo & Jet-Engines
, 40, pp.
139
146
.10.1515/tjj-2020-0037
4.
French
,
D.
,
1991
, “
Creep and Creep Failures
,” National Board of Boiler and Pressure Vessel Inspectors, BULLETIN, Online, accessed Dec. 15, 2023, https://www.nationalboard.org/Index.aspx?pageID=181
5.
Beagle
,
D.
,
2021
, “
GER-3620P Heavy-Duty Gas Turbine Operating and Maintenance Considerations
,” General Electric Power, Online, accessed Dec. 15, 2023, https://www.gevernova.com/gas-power/resources/technical-downloads/ger-3620p-operation-maintenance-considerations
6.
Stepka
,
F. S.
,
1980
, “
Analysis of Uncertainties in Turbine Metal Temperature Predictions
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-TP-1593, E-228.
7.
Maravilla Herrera
,
C.
,
Yepifanov
,
S.
, and
Loboda
,
I.
,
2017
, “
Improvement of Turbine Blade Lifetime Assessment by More Accurate Estimation of the Thermal Boundary Conditions
,”
Adv. Mech. Eng.
,
9
(
4
), p.
1687814017698613
.10.1177/1687814017698613
8.
Abaqus Theory Manual
,
2017
, “
Rate-Dependent Metal Plasticity (Creep)
,” Section 4.3.4.
9.
Ansys® Mechanical APDL, 2022R2
,
2022
, “
Implicit Creep Equations
,” Material Reference 4.5.5.1 ANSYS, Inc.
10.
Day
,
W. D.
, and
Gordon
,
A. P.
,
2017
, “
Further Development of Modified Theta Project Creep Models With Life Fraction Hardening
,”
ASME
Paper No. GT2017-63675.10.1115/GT2017-63675
11.
Altstadt
,
E.
, and
Moessner
,
T.
,
2000
, “
Extension of the Ansys Creep and Damage Simulation Capabilities
,”
Forschucngszentrum Rossendorf, Wissenschaftlich-Technisch Berichte
,
Dresden
, Report No.
FXR-296
.https://www.osti.gov/etdeweb/servlets/purl/20117476
12.
Kauppila
,
P.
,
Kouhia
,
R.
,
Ojanperä
,
J.
,
Saksala
,
T.
, and
Sorjonen
,
T.
,
2016
, “
A Continuum Damage Model For Creep Fracture And Fatigue Analyses
,”
Proc. Struct. Integr.
,
2
, pp.
887
894
.10.1016/j.prostr.2016.06.114
13.
Lindvall
,
A.
,
2020
, “
Modeling and Simulation of Creep in a Thermal Energy Storage Unit
,” Master's thesis in Applied Mechanics,
Chalmers University or Technology
,
Gothenberg, Sweden
.
14.
Stewart
,
C. M.
,
2013
, “
A Hybrid Constitutive Model For Creep, Fatigue, And Creep-Fatigue Damage
,” Electronic Theses and Dissertations, University of Central Florida, Orlando, FL.
15.
Kachanov
,
L. M.
,
1958
, “
On Creep Rupture Time
,”
Izvestia Akademii Nauk SSSR, Otd. Tech.Nauk, Proceedings of the Academy of Sciences of the USSR, Division of Technical Sciences
,
Moscow
, USSR, Report No. 8.
16.
Rabotnov
,
Y. N.
,
1969
,
Creep Problems in Structural Members
(Translation From the Original Russian),
North-Holland
,
Amsterdam, The Netherlands
.
17.
Cano
,
J.
, and
Stewart
,
C.
,
2021
, “
A Continuum Damage Mechanics (CDM) Based Wilshire Model For Creep Deformation, Damage, And Rupture Prediction
,”
Mater. Sci. Eng.: A
,
799
, p.
140231
.10.1016/j.msea.2020.140231
18.
Day
,
W. D.
, and
Gordon
,
A. P.
,
2014
, “
Life Fraction Hardening Applied to a Modified Theta Projection Creep Model for a Nickel-Based Super Alloy
,”
ASME
Paper No. GT2014-25881.10.1115/GT2014-25881
19.
Day
,
W. D.
, and
Gordon
,
A. P.
,
2013
, “
A Modified Theta Projection Creep Model for a Nickel-Based Super-Alloy
,”
ASME
Paper No. GT2013-94805.10.1115/GT2013-94805
20.
Robinson
,
E. L.
,
1952
, “
Effect of Temperature Variation on the Long-Time Rupture Strength of Steels
,”
Trans. ASME
,
74
(
5
), pp.
777
780.
10.1115/1.4015916
21.
Evans
,
M.
,
Parker
,
J.
, and
Wilshire
,
B.
,
1992
, “
The Theta Projection Concept – A Model-Based Approach to Design and Life Extension of Engineering Plant
,”
Int. J. Pressure Vessels Piping
,
50
(
1–3
), pp.
147
160
.10.1016/0308-0161(92)90035-E
22.
Riva
,
A.
, and
Maldini
,
M.
,
2015
, “
Stress Relaxation Modelling
,”
ASME
Paper No. GT2015-43755.10.1115/GT2015-43755
23.
Brinkman
,
C. R.
,
1976
, “
Application of Hastelloy X in Gas-Cooled Reactor Systems
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No.
ORNL/TM-5405
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/08/298/8298539.pdf
24.
Houck
,
L.
,
Sewell
,
D.
,
Burke
,
M.
, and
Vogel
,
G.
,
2015
, “
A Fully Coupled Aero, Thermal, and Structural Lifetime Model for Root Cause Failure Analysis and Robust Redesign of an Industrial F Class Gas Turbine Blade
,”
ASME
Paper No. GT2015-42505.10.1115/GT2015-42505
25.
Koul
,
A.
, and
Castillo
,
R.
,
1991
, “
A Critical Assessment of θ-Projection Concept for Creep Life Prediction of Nickel-Based Superalloy Components
,”
Mater. Sci. Eng., A
,
138
(
2
), pp.
213
219
.10.1016/0921-5093(91)90690-O
26.
Sawada
,
K.
,
Taniuchi
,
Y.
,
Sekido
,
K.
,
Nojima
,
T.
, and
Kimura
,
K.
,
2022
, “
Creep Properties and Analysis of Creep Rupture Data of 2.25cr-1 mo-0.3v Steels
,”
Sci. Technol. Adv. Mater.: Methods
,
2
(
1
), pp.
198
212
.10.1080/27660400.2022.2080484
27.
Messner
,
M. C.
, and
Sham
,
T. L.
,
2020
, “
An Initial Assessment of the Design Margins of Different ASME Section III, Division 5 Design Rules
,” Applied Materials Division, Argonne National Laboratory, Report No.
ANL-ART-196
.10.2172/1658588
28.
Day
,
W. D.
,
2021
, “
Developing an Implicit Creep Model From Open Literature Data
,”
ASME
Paper No. GT2021-59765.10.1115/GT2021-59765
29.
van Esch
,
H.
,
Pietersen
,
S.
,
Greaves
,
W.
,
Bridges
,
A.
, and
Scheibel
,
J.
,
2023
, “
Full Rejuvenation Heat Treatment of MGA 1400DS
,”
ASME
Paper No. GT2023-101741.10.1115/GT2023-101741
You do not currently have access to this content.