Abstract

Composite fan blades are the preferred alternative for the fan stage of most advanced high bypass ratio turbofan engines. The dovetail part bears a significant centrifugal load, and its ability to safely bear this load is one of the key points of the multilevel “test pyramid” approach of compliance demonstration. Debonding between adjacent layers is the main damage mode of laminated composite fan blades. However, there is difficulty in measuring the as-manufactured interlaminar mechanical properties used in finite element models. In this study, tensile loading was applied to simulate the interacting centrifugal force and capture mixed-mode damage evolution. Structural responses and material damages were calibrated with measured tensile loads through Bayesian inversion, where interface and contact elements with distinct bilinear behavior were selected. Posterior probability distributions of maximum interface tractions and contact stresses were solved using Markov chain Monte Carlo (MCMC) sampler. Results indicated that the two bilinear cohesive material models had a capacity of predicting empirical means of longitudinal reaction forces as that in test considering additional discrepancy term (0.035 kN and 0.96 kN respectively), while they made an significant impact on the prediction of tensile load history especially when two delamination cracks initiated and propagated. Interface elements provided a higher matching quality in predicting loading history and capturing damage mechanism in association with in-plane progressive damage analysis. This calibrated parameter set could be functioned as benchmark in numerically determining the ultimate tensile load of dovetail elements and reducing the necessary number of physical tests at elemental length level.

References

1.
Amoo
,
L. M.
,
2013
, “
On the Design and Structural Analysis of Jet Engine Fan Blade Structures
,”
Prog. Aerosp. Sci.
,
60
, pp.
1
11
.10.1016/j.paerosci.2012.08.002
2.
Wang
,
Y.-N.
,
Gong
,
Y.
,
Zhang
,
Q.
,
He
,
Y.-H.
,
Jiao
,
J.
, and
Hu
,
N.
,
2023
, “
Vibration Fatigue Properties of Laminated and 2.5D Woven Composites: A Comparative Study
,”
Int. J. Fatigue
,
168
, p.
107466
.10.1016/j.ijfatigue.2022.107466
3.
Potter
,
K.
,
Khan
,
B.
,
Wisnom
,
M.
,
Bell
,
T.
, and
Stevens
,
J.
,
2008
, “
Variability, Fiber Waviness and Misalignment in the Determination of the Properties of Composite Materials and Structures
,”
Composites, Part A
,
39
(
9
), pp.
1343
1354
.10.1016/j.compositesa.2008.04.016
4.
Sriramula
,
S.
, and
Chryssanthopoulos
,
M. K.
,
2009
, “
Quantification of Uncertainty Modeling in Stochastic Analysis FRP Composites
,”
Composites, Part A
,
40
(
11
), pp.
1673
1684
.10.1016/j.compositesa.2009.08.020
5.
Brynjarsdóttir
,
J.
, and
O'Hagan
,
A.
,
2014
, “
Learning About Physical Parameters: The Importance of Model Discrepancy
,”
Inverse Probl.
,
30
(
11
), p.
114007
.10.1088/0266-5611/30/11/114007
6.
Chuaqui
,
T. R. C.
,
Rhead
,
A. T.
,
Butler
,
R.
, and
Scarth
,
C.
,
2021
, “
A Data-Driven Bayesian Optimization Framework for the Design and Stacking Sequence Selection of Increased Notched Strength Laminates
,”
Composites, Part B
,
226
, p.
109347
.10.1016/j.compositesb.2021.109347
7.
Zhao
,
L.-B.
,
Gong
,
Y.
, and
Zhang
,
J.-Y.
,
2019
, “
A Survey on Delamination Growth Behavior in Fiber Reinforced Composite Laminates
,”
Acta Aeronaut. Astronaut. Sin.
,
40
(
1
), pp.
171
199
.10.7527/S1000-6893.2018.22509
8.
Campilho
,
R. D. S. G.
,
Banea
,
M. D.
,
Neto
,
J. A. B. P.
, and
Silva
,
L. F. M. D.
,
2013
, “
Modelling Adhesive Joints With Cohesive Zone Models: Effect of the Cohesive Law Shape of the Adhesive Layer
,”
Int. J. Adhes. Adhes.
,
44
(
38
), pp.
48
56
.10.1016/j.ijadhadh.2013.02.006
9.
Alfano
,
G.
, and
Crisfield
,
M. A.
,
2001
, “
Finite Element Interface Models for Delamination Analysis of Laminated Composites: Mechanical and Computational Issues
,”
Int. J. Numer. Methods Eng.
,
50
(
7
), pp.
1701
1736
.10.1002/nme.93
10.
Vandenbsch
,
M. J.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
,
2008
, “
An Improved Description of the Exponential Xu And Needleman Cohesive Zone Law for Mixed-Mode Decohesion
,”
Eng. Fract. Mech.
,
75
(
16
), pp.
1220
1234
.10.1016/j.engfracmech.2005.12.006
11.
Harper
,
P. W.
, and
Hallett
,
S. R.
,
2021
, “
Cohesive Zone Length in Numerical Simulations of Composite Delamination
,”
Eng. Fract. Mech.
,
255
, pp.
4774
4792.
10.1016/j.engfracmech.2008.06.004
12.
Chen
,
Y.
,
Fu
,
L.
, and
Dong
,
W.
,
2018
, “
Novel Cohesive/Adhesive Ice Shedding Model for Spinner Core
,”
J. Propul. Power
,
34
(
3
), pp.
647
659
.10.2514/1.B36289
13.
Feng
,
W.
,
Xu
,
F.
,
You
,
H.
, and
Li
,
M.-L.
,
2018
, “
Adhesive Damage and Defect Analysis of Scarf-Repaired Composite by Combining Extended Finite Element Method and Cohesive Zone Model
,”
Acta Mater. Compositae Sin.
,
35
(
5
), pp.
1354
1360
.10.13801/j.cnki.fhclxb.20170807.001
14.
Lin
,
S.
,
Yang
,
L.-Q.
,
Xu
,
H.
,
Jia
,
X.-L.
,
Yang
,
X.-P.
, and
Zu
,
L.
,
2021
, “
Progressive Damage Analysis for Multiscale Modelling of Composite Pressure Vessels Based on Puck Failure Criterion
,”
Compos. Struct.
,
255
, p.
113046
.10.1016/j.compstruct.2020.113046
15.
Camara
,
S.
,
Bunsell
,
A. R.
,
Thionnet
,
A.
, and
Allen
,
D. H.
,
2011
, “
Determination of Lifetime Probabilities of Carbon Fiber Composite Plates and Pressure Vessels for Hydrogen Storage
,”
Int. J. Hydrogen Energy
,
36
(
10
), pp.
6031
6038
.10.1016/j.ijhydene.2010.12.069
16.
Christensen
,
R. M.
,
2013
, “
The World Wide Failure Exercise II Examination of Results
,”
J. Reinf. Plast. Comps.
,
32
(
21
), pp.
1668
1672
.10.1177/0731684413498634
17.
Marelli
,
S.
, and
Sudret
,
B.
,
2014
, “
UQLab: A Framework for Uncertainty Quantification in Matlab
,”
Proceedings of 2nd International Conference on Vulnerability, Risk Analysis and Management
, Liverpool, UK, July 13–16, pp.
2554
2563
.10.1061/9780784413609.257
18.
Xu
,
Y.-J.
,
Li
,
X.-Y.
,
Wang
,
X.-G.
, and
Liang
,
L.-H.
,
2014
, “
Inverse Parameter Identification of Cohesive Zone Model for Simulating Mixed-Mode Crack Propagation
,”
Int. J. Solids Struct.
,
51
(
13
), pp.
2400
2410
.10.1016/j.ijsolstr.2014.03.008
19.
Jaillon
,
A.
,
Jumel
,
J.
,
Lachaud
,
F.
, and
Paroissien
,
E.
,
2020
, “
Mode I Cohesive Zone Model Parameters Identification and Comparison of Measurement Techniques Based on Uncertainty Estimation
,”
Int. J. Solids Struct.
,
191–192
(
2
), pp.
577
587
.10.1016/j.ijsolstr.2019.12.014
20.
Chen
,
X.
,
Deng
,
X.
,
Sutton
,
M. A.
, and
Zavattieri
,
P.
,
2014
, “
An Inverse Analysis of Cohesive Model Parameter Values for Ductile Crack Growth Simulation
,”
Int. J. Mech. Sci.
,
79
(
10
), pp.
206
215
.10.1016/j.ijmecsci.2013.12.006
21.
Zhao
,
W.-T.
,
Yang
,
Y.-Z.
,
Wang
,
C.-H.
,
Ju
,
X.-M.
, and
Yan
,
G.
,
2022
, “
Parameter Inversion for Composite Interlayer Cohesive Zone Model Based on Bayesian Inference
,”
J. Mech. Eng.
,
58
(
6
), pp.
110
118
.10.3901/JME.2022.06.110
22.
Albuquerque
,
E. B.
,
Guzman
,
C.
,
Borges
,
L. A.
, and
Castello
,
D. A.
,
2018
, “
Bayesian Framework for the Calibration of Cohesive Zone Models
,”
J. Adhes.
,
94
(
4
), pp.
255
277
.10.1080/00218464.2016.1268055
23.
Carl
,
S.
,
Geir
,
O.
,
Janice
,
M. D. B.
,
Rhead
,
A. T.
, and
Bulter
,
R.
,
2023
, “
Bayesian Calibration of a Finite Element C-Spar Model Using Digital Image Correlation
,”
Proceedings of 23rd International Conference on Composite Materials
, Belfast, Ireland, Aug. 1–6, pp.
1
12
.
24.
Xiao
,
S.
, and
Nowak
,
W.
,
2022
, “
Reliability Sensitivity Analysis Based on a Two-Stage Markov Chain Monte Carlo Simulation
,”
Aerosp. Sci. Technol.
,
130
, p.
107938
.10.1016/j.ast.2022.107938
25.
Song
,
J.
,
Cui
,
Y.
,
Wei
,
P.
,
Valdebenito
,
M. A.
, and
Zhang
,
W.
,
2024
, “
Constrained Bayesian Optimization Algorithms for Estimating Design Points in Structural Reliability Analysis
,”
Reliab. Eng. Syst. Saf.
,
241
, p.
109613
.10.1016/j.ress.2023.109613
26.
Goodman
,
J.
, and
Weare
,
J.
,
2010
, “
Ensemble Samplers With Affine Invariance
,”
Commun. Appl. Math. Comput. Sci.
,
5
(
1
), pp.
65
80
.10.2140/camcos.2010.5.65
27.
Kang
,
Y.-Q.
,
2020
, “
Laminate Design and Analysis of Composite Fan Blade Dovetail
,” M. Eng. dissertation,
Shanghai Jiao Tong University
,
Shanghai, China
.
28.
Tang
,
X.
,
Chen
,
Y.
, and
Zhang
,
J.-G.
,
2022
, “
Numerical Investigation On HCF Weak Link Locations of a Wide-Chord Laminated Composite Fan Blade With Coupled Modal Vibrations
,”
ASME
Paper No. GT2022-83613.10.1115/GT2022-83613
29.
Ansys
,
2023
, “
Ansys Composite PrePost (ACP) 23 R1 User's Guide
,” ANSYS Switzerland GmbH.
You do not currently have access to this content.