Abstract

In this study, n-decane/air two-phase rotating detonation is numerically investigated based on Eulerian–Lagrangian method. Three-dimensional rotating detonation chamber (RDC) with various numbers of fuel orifices (30, 45, 60, and 90) is considered. The effects of numbers of fuel orifices on the fuel-mixing characteristics, the flow field structures, and the propagation characteristics of the rotating detonation wave (RDW) are analyzed. The results show that the liquid fuel mixing is influenced by the fuel jets and the incoming air shear. The former mainly affects the mixing uniformity, while the latter has a great influence on the Sauter mean diameter. Specifically, increasing the numbers of fuel orifices improves the mixing uniformity but slightly rises the Sauter mean diameter. Besides, the number of fuel orifices has a significant impact on the propagation mode of RDW. Single-wave mode is established in RDC except for the 30 orifices. Furthermore, a dimensionless kinematic parameter (α) is used to represent the fuel reactivity and predict the propagation mode of RDW. Moreover, the propagation parameters of RDW vary greatly with different numbers of fuel orifices. As the number of orifices increased, the formation time to stable operation of RDW decreases. The research results can provide guidance for the design of two-phase rotating detonation engine (RDE).

References

1.
Wolański
,
P.
,
2013
, “
Detonative Propulsion
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
125
158
.10.1016/j.proci.2012.10.005
2.
Roy
,
G. D.
,
Frolov
,
S. M.
,
Borisov
,
A. A.
, and
Netzer
,
D. W.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.10.1016/j.pecs.2004.05.001
3.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.10.1016/j.pecs.2019.04.001
4.
Athmanathan
,
V.
,
Braun
,
J.
,
Ayers
,
Z. M.
,
Fugger
,
C. A.
,
Webb
,
A. M.
,
Slipchenko
,
M. N.
,
Paniagua
,
G.
,
Roy
,
S.
, and
Meyer
,
T. R.
,
2022
, “
On the Effects of Reactant Stratification and Wall Curvature in Non-Premixed Rotating Detonation Combustors
,”
Combust. Flame
,
240
, p.
112013
.10.1016/j.combustflame.2022.112013
5.
Zhang
,
Y. Z.
,
Sheng
,
Z. H.
,
Rong
,
G. Y.
,
Shen
,
D. W.
,
Wu
,
K. W.
, and
Wang
,
J. P.
,
2023
, “
Experimental Research on the Performance of Hollow and Annular Rotating Detonation Engines With Nozzles
,”
Appl. Therm. Eng.
,
218
, p.
119339
.10.1016/j.applthermaleng.2022.119339
6.
Wang
,
Y. H.
,
Le
,
J. L.
,
Wang
,
C.
, and
Zheng
,
Y. S.
,
2018
, “
A Non-Premixed Rotating Detonation Engine Using Ethylene and Air
,”
Appl. Therm. Eng.
,
137
, pp.
749
757
.10.1016/j.applthermaleng.2018.04.015
7.
Shen
,
P. W.
, and
Adamson
,
T. C.
, Jr.
,
1972
, “
Theoretical Analysis of a Rotating Two-Phase Detonation in Liquid Rocket Motors
,”
Acta Astronaut.
,
17
, pp.
15
28
.https://ntrs.nasa.gov/api/citations/19730015217/downloads/19730015217.pdf
8.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2006
, “
Continuous Spin Detonations
,”
J. Propul. Power
,
22
(
6
), pp.
1204
1216
.10.2514/1.17656
9.
Kindracki
,
J.
,
2015
, “
Experimental Research on Rotating Detonation in Liquid Fuel-Gaseous Air Mixtures
,”
Aerosp. Sci. Technol.
,
43
, pp.
445
453
.10.1016/j.ast.2015.04.006
10.
Li
,
J. M.
,
Chang
,
P. H.
,
Li
,
L.
,
Yang
,
Y. C.
,
Teo
,
C. J.
, and
Khoo
,
B. C.
,
2018
, “
Investigation of Injection Strategy for Liquid-Fuel Rotating Detonation Engine
,”
AIAA
Paper No. 2018-0403.10.2514/6.2018-0403
11.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2021
, “
Continuous Multifront Detonation of Kerosene-Air Mixture in an Annular Combustor With Variations of Its Geometry
,”
Shock Waves
,
31
(
8
), pp.
829
839
.10.1007/s00193-021-01044-4
12.
Gaillard
,
T.
,
Davidenko
,
D.
, and
Dupoirieux
,
F.
,
2017
, “
Numerical Simulation of a Rotating Detonation With a Realistic Injector Designed for Separate Supply of Gaseous Hydrogen and Oxygen
,”
Acta Astronaut.
,
141
, pp.
64
78
.10.1016/j.actaastro.2017.09.011
13.
Driscoll
,
R.
,
Aghasi
,
P.
,
St George
,
A.
, and
Gutmark
,
E. J.
,
2016
, “
Three-Dimensional, Numerical Investigation of Reactant Injection Variation in a H2/Air Rotating Detonation Engine
,”
Int. J. Hydrogen Energy
,
41
(
9
), pp.
5162
5175
.10.1016/j.ijhydene.2016.01.116
14.
Wang
,
Y. H.
, and
Le
,
J. L.
,
2019
, “
Rotating Detonation Engines With Two Fuel Orifice Schemes
,”
Acta Astronaut.
,
161
, pp.
262
275
.10.1016/j.actaastro.2019.05.035
15.
Rankin
,
B. A.
,
Richardson
,
D. R.
,
Caswell
,
A. W.
,
Naples
,
A. G.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2017
, “
Chemiluminescence Imaging of an Optically Accessible Non-Premixed Rotating Detonation Engine
,”
Combust. Flame
,
176
, pp.
12
22
.10.1016/j.combustflame.2016.09.020
16.
Liu
,
H.
,
Song
,
F.
,
Jin
,
D.
,
Xu
,
S.
, and
Yang
,
X.
,
2023
, “
Experimental Investigation on Spray and Detonation Initiation Characteristics of Premixed/Non-Premixed RDE
,”
Fuel
,
331
, p.
125949
.10.1016/j.fuel.2022.125949
17.
Sun
,
B.
, and
Ma
,
H.
,
2019
, “
Two-Dimensional Numerical Study of Two-Phase Rotating Detonation Wave With Different Injections
,”
AIP Adv.
,
9
(
11
), p.
115307
.10.1063/1.5113881
18.
Liu
,
X. Y.
,
Luan
,
M. Y.
,
Chen
,
Y. L.
, and
Wang
,
J. P.
,
2021
, “
Propagation Behavior of Rotating Detonation Waves With Premixed Kerosene/Air Mixtures
,”
Fuel
,
294
, p.
120253
.10.1016/j.fuel.2021.120253
19.
Ding
,
C. W.
,
Wu
,
Y. W.
,
Xu
,
G.
,
Xia
,
Y. Q.
,
Li
,
Q.
, and
Weng
,
C. S.
,
2022
, “
Effects of the Oxygen Mass Fraction on the Wave Propagation Modes in a Kerosene-Fueled Rotating Detonation Combustor
,”
Acta Astronaut.
,
195
, pp.
204
214
.10.1016/j.actaastro.2022.03.003
20.
Sun
,
J.
,
Zhou
,
J.
,
Liu
,
S. J.
,
Lin
,
Z. Y.
, and
Lin
,
W.
,
2019
, “
Effects of Air Injection Throat Width on a Non-Premixed Rotating Detonation Engine
,”
Acta Astronaut.
,
159
, pp.
189
198
.10.1016/j.actaastro.2019.03.067
21.
Macpherson
,
G. B.
,
Nordin
,
N.
, and
Weller
,
H. G.
,
2009
, “
Particle Tracking in Unstructured, Arbitrary Polyhedral Meshes for Use in CFD and Molecular Dynamics
,”
Commun. Numer. Methods Eng.
,
25
(
3
), pp.
263
273
.10.1002/cnm.1128
22.
Crowe
,
C. T.
,
Sharma
,
M. P.
, and
Stock
,
D. E.
,
1977
, “
The Particle-Source-in Cell (PSI-CELL) Model for Gas-Droplet Flows
,”
ASME J. Fluids Eng.
,
99
(
2
), pp.
325
332
.10.1115/1.3448756
23.
Zhao
,
M. J.
, and
Zhang
,
H. W.
,
2020
, “
Origin and Chaotic Propagation of Multiple Rotating Detonation Waves in Hydrogen/Air Mixtures
,”
Fuel
,
275
, p.
117986
.10.1016/j.fuel.2020.117986
24.
Meng
,
Q. Y.
,
Zhao
,
M. J.
,
Zheng
,
H. T.
, and
Zhang
,
H. W.
,
2021
, “
Eulerian-Lagrangian Modelling of Rotating Detonative Combustion in Partially Pre-Vaporized N-Heptane Sprays With Hydrogen Addition
,”
Fuel
,
290
, p.
119808
.10.1016/j.fuel.2020.119808
25.
Jin
,
S.
,
Zhang
,
H. W.
,
Zhao
,
N. B.
, and
Zheng
,
H. T.
,
2022
, “
Simulations of Rotating Detonation Combustion With In-Situ Evaporating Bi-Disperse n-Heptane Sprays
,”
Fuel
,
314
, p.
123087
.10.1016/j.fuel.2021.123087
26.
Meng
,
Q. Y.
,
Zhao
,
M. J.
,
Xu
,
Y.
,
Zhang
,
L. Q.
, and
Zhang
,
H. W.
,
2023
, “
Structure and Dynamics of Spray Detonation in n-Heptane Droplet/Vapor/Air Mixtures
,”
Combust. Flame
,
249
, p.
112603
.10.1016/j.combustflame.2022.112603
27.
Zhao
,
T.
,
Zhu
,
J. F.
,
Ling
,
M. T.
,
Yan
,
C.
, and
You
,
Y. C.
,
2023
, “
Coupling Characteristic Analysis and Propagation Direction Control in Hydrogen-Air Rotating Detonation Combustor With Turbine
,”
Int. J. Hydrogen Energy
,
48
(
58
), pp.
22250
22263
.10.1016/j.ijhydene.2023.03.103
28.
Chen
,
X.
,
Zhao
,
N. B.
,
Jia
,
X. B.
,
Liu
,
S. Z.
,
Zheng
,
H. T.
, and
Li
,
Z. M.
,
2019
, “
Numerical Investigation on Detonation Initiation Using Toroidal Shock Wave Focusing
,”
Aerosp. Sci. Technol.
,
92
, pp.
300
313
.10.1016/j.ast.2019.06.016
29.
Wang
,
Y. H.
,
2016
, “
Rotating Detonation in a Combustor of Trapezoidal Cross Section for the Hydrogen-Air Mixture
,”
Int. J. Hydrogen Energy
,
41
(
12
), pp.
5605
5616
.10.1016/j.ijhydene.2016.02.028
30.
Zhao
,
N. B.
,
Meng
,
Q. Y.
,
Zheng
,
H. T.
,
Li
,
Z. M.
, and
Deng
,
F. Q.
,
2020
, “
Numerical Study of the Influence of Annular Width on the Rotating Detonation Wave in a Non-Premixed Combustor
,”
Aerosp. Sci. Technol.
,
100
, p.
105825
.10.1016/j.ast.2020.105825
31.
Wang
,
Y. H.
,
Wang
,
J. P.
, and
Qiao
,
W. Y.
,
2016
, “
Effects of Thermal Wall Conditions on Rotating Detonation
,”
Comput. Fluids
,
140
, pp.
59
71
.10.1016/j.compfluid.2016.09.008
32.
Ma
,
Y.
,
Zhou
,
S. B.
,
Ma
,
H.
,
Ge
,
G. Y.
,
Yu
,
D. H.
,
Zou
,
G.
,
Liang
,
Z. T.
, and
Zhang
,
T. F.
,
2022
, “
Experimental Investigation on Propagation Characteristics of Liquid-Fuel/Preheated-Air Rotating Detonation Wave
,”
Int. J. Hydrog. Energy
,
47
(
57
), pp.
24080
24092
.10.1016/j.ijhydene.2022.05.186
33.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
(
1–2
), pp.
31
43
.10.1080/00102208108946970
34.
Shao
,
X. F.
,
Zhao
,
N. B.
, and
Zheng
,
H. T.
,
2023
, “
Effects of Inlet Total Pressure on the Formation and Propagation Characteristics of n-Decane Two-Phase Rotating Detonation Waves
,”
Aerosp. Sci. Technol.
,
138
, p.
108317
.10.1016/j.ast.2023.108317
35.
Miller
,
R. S.
,
Harstad
,
K.
, and
Bellan
,
J.
,
1998
, “
Evaluation of Equilibrium and Non-Equilibrium Evaporation Models for Many-Droplet Gas-Liquid Flow Simulations
,”
Int. J. Multiphase Flow
,
24
(
6
), pp.
1025
1055
.10.1016/S0301-9322(98)00028-7
36.
Meng
,
Q. Y.
,
Zhao
,
N. B.
,
Zheng
,
H. T.
,
Yang
,
J. L.
,
Li
,
Z. M.
, and
Deng
,
F. Q.
,
2019
, “
A Numerical Study of Rotating Detonation Wave With Different Numbers of Fuel Holes
,”
Aerosp. Sci. Technol.
,
93
, p.
105301
.10.1016/j.ast.2019.105301
37.
Salvadori
,
M.
,
Panchal
,
A.
, and
Menon
,
S.
,
2023
, “
Simulation of Liquid Droplets Combustion in a Rotating Detonation Engine
,”
Proc. Combust. Inst.
,
39
(
3
), pp.
3063
3072
.10.1016/j.proci.2022.09.002
38.
Ren
,
Z. X.
, and
Zheng
,
L. X.
,
2021
, “
Numerical Study on Rotating Detonation Stability in Two-Phase Kerosene-Air Mixture
,”
Combust. Flame
,
231
, p.
111484
.10.1016/j.combustflame.2021.111484
39.
Zhong
,
Y. P.
,
Wu
,
Y.
,
Jin
,
D.
,
Chen
,
X.
,
Yang
,
X. K.
, and
Wang
,
S. L.
,
2019
, “
Investigation of Rotating Detonation Fueled by the Pre-Combustion Cracked Kerosene
,”
Aerosp. Sci. Technol.
,
95
, p.
105480
.10.1016/j.ast.2019.105480
40.
Meng
,
H. L.
,
Zheng
,
Q.
,
Weng
,
C. S.
,
Wu
,
Y. W.
,
Feng
,
W. K.
,
Xu
,
G.
, and
Wang
,
F.
,
2021
, “
Propagation Mode Analysis of Rotating Detonation Waves Fueled by Liquid Kerosene
,”
Acta Astronaut.
,
187
, pp.
248
258
.10.1016/j.actaastro.2021.06.043
41.
Wang
,
F.
, and
Weng
,
C. S.
,
2022
, “
Numerical Research on Two-Phase Kerosene/Air Rotating Detonation Engines
,”
Acta Astronaut.
,
192
, pp.
199
209
.10.1016/j.actaastro.2021.12.026
42.
Zhao
,
N. B.
,
Shao
,
X. F.
, and
Zheng
,
H. T.
,
2024
, “
Stability Investigation of Two-Phase n-Decane Rotating Detonation Waves
,”
Aerosp. Sci. Technol.
,
144
, p.
108817
.10.1016/j.ast.2023.108817
43.
Wen
,
H. C.
,
Wei
,
W.
,
Fan
,
W. Q.
,
Xie
,
Q. F.
, and
Wang
,
B.
,
2022
, “
On the Propagation Stability of Droplet-Laden Two-Phase Rotating Detonation Waves
,”
Combust. Flame
,
244
, p.
112271
.10.1016/j.combustflame.2022.112271
44.
Li
,
X. F.
,
Li
,
J. Z.
,
Qin
,
Q. Y.
,
Jin
,
W.
, and
Yuan
,
L.
,
2024
, “
Experimental Study on Detonation Characteristics of Liquid Kerosene/Air Rotating Detonation Engine
,”
Acta Astronaut.
,
215
, pp.
124
134
.10.1016/j.actaastro.2023.12.001
45.
He
,
X. J.
,
Liu
,
X. Y.
, and
Wang
,
J. P.
,
2022
, “
On the Mechanisms of the Multiplicity and Bifurcation of Detonation Waves in 3D Rotating Detonation Engines
,”
Aerosp. Sci. Technol.
,
130
, p.
107874
.10.1016/j.ast.2022.107874
46.
Yao
,
K. P.
,
Yang
,
P. F.
,
Teng
,
H. H.
,
Chen
,
Z.
, and
Wang
,
C.
,
2022
, “
Effects of Injection Parameters on Propagation Patterns of Hydrogen-Fueled Rotating Detonation Waves
,”
Int. J. Hydrogen Energy
,
47
(
91
), pp.
38811
38822
.10.1016/j.ijhydene.2022.09.051
47.
Zhao
,
M. J.
,
Cleary
,
M. J.
, and
Zhang
,
H. W.
,
2021
, “
Combustion Mode and Wave Multiplicity in Rotating Detonative Combustion With Separate Reactant Injection
,”
Combust. Flame
,
225
, pp.
291
304
.10.1016/j.combustflame.2020.11.001
48.
Wang
,
Y.
,
Huang
,
C. Y.
,
Deiterding
,
R.
,
Chen
,
H. T.
, and
Chen
,
Z.
,
2021
, “
Propagation of Gaseous Detonation Across Inert Layers
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3555
3563
.10.1016/j.proci.2020.07.022
49.
Houim
,
R. W.
, and
Fievisohn
,
R. T.
,
2017
, “
The Influence of Acoustic Impedance on Gaseous Layered Detonations Bounded by an Inert Gas
,”
Combust. Flame
,
179
, pp.
185
198
.10.1016/j.combustflame.2017.02.001
You do not currently have access to this content.