Abstract

Wind energy harvesting may see radical transformation with the introduction of new wind turbine concepts. The vertical axis configuration offers significant advantages that may promote the installation in deep waters, where only floating platforms are feasible and economically convenient. While experimental tests for multi-objective assessment are expensive, and analytical methods relying on blade element momentum are of limited fidelity, advanced, high-fidelity computational fluid dynamics (CFD) techniques are a promising tool for the performance prediction of wind turbines. CFD simulations enable critical evaluation of real-time, long-term aerodynamic loading and prediction across various operational scenarios. This paper presents a fully three-dimensional (3D) CFD investigation on the aerodynamics and near-wake development of a small-scale H-shaped vertical axis wind turbine (VAWT) and two modified versions suited to tilted conditions, typical for spar-buoy applications. An in-depth spanwise study of the three versions at the peak power condition is performed. The difference in the swept area and the coning angle effect in combination with the tilt condition are considered. The obtained results show significant, potential, contribution to the ongoing development of the floating-VAWT technology. The vortical structures development is also commented to provide better understanding of the physical phenomena taking place. Since the relevant energy harvesting capability being predicted for the newly designed turbines, further simulations aimed at demonstrating the engineering relevance of the machines, utility-scale models of the turbine. The numerical predictions confirm the high performance achievable by the HV-shaped wind turbines, providing valuable insights for its future installations.

References

1.
Breton
,
S.-P.
, and
Moe
,
G.
,
2009
, “
Status, Plans and Technologies for Offshore Wind Turbines in Europe and North America
,”
Renewable Energy
,
34
(
3
), pp.
646
654
.10.1016/j.renene.2008.05.040
2.
Hand
,
B.
, and
Cashman
,
A.
,
2020
, “
A Review on the Historical Development of the Lift-Type Vertical Axis Wind Turbine: From Onshore to Offshore Floating Application
,”
Sustainable Energy Technol. Assess.
,
38
, p.
100646
.10.1016/j.seta.2020.100646
3.
Islam
,
M.
,
Mekhilef
,
S.
, and
Saidur
,
R.
,
2013
, “
Progress and Recent Trends of Wind Energy Technology
,”
Renewable Sustainable Energy Rev.
,
21
, pp.
456
468
.10.1016/j.rser.2013.01.007
4.
Tjiu
,
W.
,
Marnoto
,
T.
,
Mat
,
S.
,
Ruslan
,
M.-H.
, and
Sopian
,
K.
,
2015
, “
Darrieus Vertical Axis Wind Turbine for Power Generation I: Assessment of Darrieus VAWT Configurations
,”
Renewable Energy
,
75
, pp.
50
67
.10.1016/j.renene.2014.09.038
5.
Dabiri
,
J. O.
,
2011
, “
Potential Order-of-Magnitude Enhancement of Wind Farm Power Density Via Counter-Rotating Vertical-Axis Wind Turbine Arrays
,”
J. Renewable Sustainable Energy
,
3
, p. 043104.10.1063/1.3608170
6.
Ottermo
,
F.
, and
Bernhoff
,
H.
,
2014
, “
An Upper Size of Vertical Axis Wind Turbines
,”
Wind Energy
,
17
(
10
), pp.
1623
1629
.10.1002/we.1655
7.
Mertens
,
S.
,
van Kuik
,
G.
, and
van Bussel
,
G.
,
2003
, “
Performance of an H-Darrieus in the Skewed Flow on a Roof
,”
ASME J. Sol. Energy Eng.
,
125
(
4
), pp.
433
440
.10.1115/1.1629309
8.
Ferreira
,
C. J. S.
,
Van Bussel
,
G. J. W.
, and
Van Kuik
,
G. A. M.
,
2006
, “
Wind Tunnel Hotwire Measurements, Flow Visualization and Thrust Measurement of a VAWT in Skew
,”
ASME J. Sol. Energy Eng.
,
128
(
4
), pp.
487
497
.10.1115/1.2349550
9.
Ferreira
,
C. S.
,
Dixon
,
K.
,
Hofemann
,
C.
,
van Kuik
,
G.
, and
van Bussel
,
G.
,
2009
, “
VAWT in Skew: Stereo-PIV and Vortex Modeling
,”
AIAA
Paper No. 2009-1219.10.2514/6.2009-1219
10.
Battisti
,
L.
,
Benini
,
E.
,
Brighenti
,
A.
, Raciti
Castelli
,
M.
, Dell'
Anna
,
S.
,
Dossena
,
V.
,
Persico
,
G.
, Schmidt
Paulsen
,
U.
, and
Pedersen
,
T. F.
,
2016
, “
Wind Tunnel Testing of the DeepWind Demonstrator in Design and Tilted Operating Conditions
,”
Energy
,
111
, pp.
484
497
.10.1016/j.energy.2016.05.080
11.
Wang
,
K.
,
Hansen
,
M.
, and
Moan
,
T.
,
2015
, “
Model Improvements for Evaluating the Effect of Tower Tilting on the Aerodynamics of a Vertical Axis Wind Turbine
,”
Wind Energy
,
18
(
1
), pp.
91
110
.10.1002/we.1685
12.
Sanvito
,
A. G.
,
Dossena
,
V.
, and
Persico
,
G.
,
2021
, “
Formulation, Validation, and Application of a Novel 3D BEM Tool for Vertical Axis Wind Turbines of General Shape and Size
,”
Appl. Sci.
,
11
(
13
), p.
5874
.10.3390/app11135874
13.
Scheurich
,
F.
, and
Brown
,
R.
,
2011
, “
Vertical-Axis Wind Turbines in Oblique Flow: Sensitivity to Rotor Geometry
,” EWEA Annual Event (
Formerly Known as EWEC
), Brussels, Belgium, Mar.
14
17
.https://www.semanticscholar.org/paper/Vertical-axis-wind-turbines-in-oblique-flow%3Ato-Scheurich-Brown/5c05f333cdc64644e082f499f22083106475fdf5
14.
Orlandi
,
A.
,
Collu
,
M.
,
Zanforlin
,
S.
, and
Shires
,
A.
,
2015
, “
3D URANS Analysis of a Vertical Axis Wind Turbine in Skewed Flows
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
77
84
.10.1016/j.jweia.2015.09.010
15.
Chowdhury
,
A. M.
,
Akimoto
,
H.
, and
Hara
,
Y.
,
2016
, “
Comparative CFD Analysis of Vertical Axis Wind Turbine in Upright and Tilted Configuration
,”
Renewable Energy
,
85
, pp.
327
337
.10.1016/j.renene.2015.06.037
16.
Senga
,
H.
,
Umemoto
,
H.
, and
Akimoto
,
H.
,
2022
, “
Verification of Tilt Effect on the Performance and Wake of a Vertical Axis Wind Turbine by Lifting Line Theory Simulation
,”
Energies
,
15
(
19
), p.
6939
.10.3390/en15196939
17.
Kouaissah
,
O.
,
Franchina
,
N.
,
Siddiqui
,
M. S.
, and
Persico
,
G.
,
2024
, “
A Computational Study on the Performance and Wake Development of a H-Shaped VAWT Rotor
,”
Renewable Energy
,
222
, p.
119932
.10.1016/j.renene.2023.119932
18.
Henderson
,
A. R.
, and
Witcher
,
D.
,
2010
, “
Floating Offshore Wind Energy—A Review of the Current Status and an Assessment of the Prospects
,”
Wind Eng.
,
34
(
1
), pp.
1
16
.10.1260/0309-524X.34.1.1
19.
Franchina
,
N.
,
Persico
,
G.
, and
Savini
,
M.
,
2019
, “
2D-3D Computations of a Vertical Axis Wind Turbine Flow Field: Modeling Issues and Physical Interpretations
,”
Renewable Energy
,
136
, pp.
1170
1189
.10.1016/j.renene.2018.09.086
20.
Franchina
,
N.
,
Persico
,
G.
, and
Savini
,
M.
,
2020
, “
Three-Dimensional Unsteady Aerodynamics of a H-Shaped Vertical Axis Wind Turbine Over the Full Operating Range
,”
J. Wind Eng. Ind. Aerodyn.
,
206
, p.
104273
.10.1016/j.jweia.2020.104273
21.
Lei
,
H.
,
Zhou
,
D.
,
Lu
,
J.
,
Chen
,
C.
,
Han
,
Z.
, and
Bao
,
Y.
,
2017
, “
The Impact of Pitch Motion of a Platform on the Aerodynamic Performance of a Floating Vertical Axis Wind Turbine
,”
Energy
,
119
, pp.
369
383
.10.1016/j.energy.2016.12.086
22.
Andersson
,
E.
,
Bernhoff
,
H.
, and
Goude
,
A.
,
2023
, “
Vortex Filament Method 3D Analysis of Design Parameters for Counter-Rotating Axis Floating Tilted Turbine
,”
J. Phys.: Conf. Ser.
,
2626
(
1
), p.
012001
.10.1088/1742-6596/2626/1/012001
23.
World Wide Wind, 2024, “
Next Generation Floating Off-Shore Wind
,” World Wide Wind, Fornebu, Norway, accessed July 8, 2024, https://worldwidewind.no/
24.
Van Bussel
,
G.
,
Mertens
,
S.
,
Polinder
,
H.
, and
Sidler
,
H.
,
2004
, “
TURBY®: Concept and Realisation of a Small VAWT for the Built Environment
,”
Proceedings of the EAWE/EWEA Special Topic Conference “The Science of Making Torque From Wind,”
Delft, The Netherlands, Apr. 19–21, pp.
509
516
.https://www.researchgate.net/publication/262643200_TURBY_concept_and_realisation_of_a_small_VAWT_for_the_built_environment
25.
Li
,
Q.
,
Maeda
,
T.
,
Kamada
,
Y.
,
Murata
,
J.
,
Yamamoto
,
M.
,
Ogasawara
,
T.
,
Shimizu
,
K.
, and
Kogaki
,
T.
,
2016
, “
Study on Power Performance for Straight-Bladed Vertical Axis Wind Turbine by Field and Wind Tunnel Test
,”
Renewable Energy
,
90
, pp.
291
300
.10.1016/j.renene.2016.01.002
26.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Model for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
27.
Rezaeiha
,
A.
,
Kalkman
,
I.
, and
Blocken
,
B.
,
2017
, “
CFD Simulation of a Vertical Axis Wind Turbine Operating at a Moderate Tip Speed Ratio: Guidelines for Minimum Domain Size and Azimuthal Increment
,”
Renewable Energy
,
107
, pp.
373
385
.10.1016/j.renene.2017.02.006
28.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.10.1016/j.energy.2015.12.111
29.
Franchina
,
N.
,
Kouaissah
,
O.
,
Persico
,
G.
, and
Savini
,
M.
,
2022
, “
Three-Dimensional Modeling and Investigation of the Flow Around a Troposkein Vertical Axis Wind Turbine at Different Operating Conditions
,”
Renewable Energy
,
199
, pp.
368
381
.10.1016/j.renene.2022.08.130
30.
Battisti
,
L.
,
Persico
,
G.
,
Dossena
,
V.
,
Paradiso
,
B.
,
Castelli
,
M.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2018
, “
Experimental Benchmark Data for H-Shaped and Troposkien VAWT Architectures
,”
Renewable Energy
,
125
, pp.
425
444
.10.1016/j.renene.2018.02.098
31.
Persico
,
G.
,
Dossena
,
V.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2017
, “
Time-Resolved Experimental Characterization of Wakes Shed by H-Shaped and Troposkien Vertical Axis Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
031203
.10.1115/1.4035907
32.
Tjiu
,
W.
,
Marnoto
,
T.
,
Mat
,
S.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2015
, “
Darrieus Vertical Axis Wind Turbine for Power Generation II: Challenges in HAWT and the Opportunity of Multi-Megawatt Darrieus VAWT Development
,”
Renewable Energy
,
75
, pp.
560
571
.10.1016/j.renene.2014.10.039
33.
Hand
,
B.
, and
Cashman
,
A.
,
2017
, “
Conceptual Design of a Large-Scale Floating Offshore Vertical Axis Wind Turbine
,”
Energy Procedia
,
142
, pp.
83
88
.10.1016/j.egypro.2017.12.014
34.
Xu
,
W.
,
Li
,
G.
, and
Li
,
Y.
,
2023
, “
Feasibility Analysis of Aerodynamic Characteristics for Vertical-Axis Turbines in Offshore: A Comprehensive Analysis on Scale and Design of Wind System
,”
Ocean Eng.
,
285
, p.
115406
.10.1016/j.oceaneng.2023.115406
35.
Kouaissah
,
O.
,
Franchina
,
N.
, and
Persico
,
G.
,
2024
, “
3D CFD Study of a DeepWind Demonstrator at Design, Off-Design and Tilted Operating Conditions
,”
Energy
,
291
, p.
130313
.10.1016/j.energy.2024.130313
You do not currently have access to this content.