Abstract

We use approximate Bayesian inference, accelerated by adjoint methods, to construct a quantitatively accurate model of the thermoacoustic behavior of a weakly turbulent conical flame in a duct. We first perform a series of automated experiments to generate a dataset. The data consist of time-series pressure measurements from which we extract (i) the eigenvalue, whose real part is the growth rate and imaginary part is the angular frequency, and (ii) the pressure eigenmode measured at several axial locations. We assimilate the data into a thermoacoustic network model to infer the unknown model parameters. We begin this process by rigorously characterizing the acoustics of the cold rig. We then introduce a series of different flames and infer their flame transfer functions (FTF) with quantified uncertainty bounds. The flame transfer function is obtained with the flames in situ, so it accounts for any confinement or heat loss effects. The inference process uses only pressure measurements, so the technique is suitable for complex combustors where optical access is not available, provided the eigenvalue or eigenmode of oscillations can be measured. We validate the method by comparing the inferred fluctuating heat release rate (HRR) against direct measurements. We find that the inferred quantities compare well with the direct measurements, but the uncertainty bounds can be large if the experimental error is large.

References

1.
Juniper
,
M. P.
,
2018
, “
Sensitivity Analysis of Thermoacoustic Instability With Adjoint Helmholtz Solvers
,”
Phys. Rev. Fluids
,
3
(
11
), p.
110509
.10.1103/PhysRevFluids.3.110509
2.
Cuquel
,
A.
,
Durox
,
D.
, and
Schuller
,
T.
,
2013
, “
Scaling the Flame Transfer Function of Confined Premixed Conical Flames
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1007
1014
.10.1016/j.proci.2012.06.056
3.
Tay-Wo-Chong
,
L.
, and
Polifke
,
W.
,
2013
, “
Large Eddy Simulation-Based Study of the Influence of Thermal Boundary Condition and Combustor Confinement on Premix Flame Transfer Functions
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021502
.10.1115/1.4007734
4.
Gatti
,
M.
,
Gaudron
,
R.
,
Mirat
,
C.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2018
, “
A Comparison of the Transfer Functions and Flow Fields of Flames With Increasing Swirl Number
,”
ASME
Paper No. GT2018-76105.10.1115/GT2018-76105
5.
Nygård
,
H. T.
, and
Worth
,
N. A.
,
2021
, “
Flame Transfer Functions and Dynamics of a Closely Confined Premixed Bluff Body Stabilized Flame With Swirl
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041011
.10.1115/1.4049513
6.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.10.1016/j.proci.2008.06.204
7.
Æsøy
,
E.
,
Indlekofer
,
T.
,
Gant
,
F.
,
Cuquel
,
A.
,
Bothien
,
M. R.
, and
Dawson
,
J. R.
,
2022
, “
The Effect of Hydrogen Enrichment, Flame-Flame Interaction, Confinement, and Asymmetry on the Acoustic Response of a Model Can Combustor
,”
Combust. Flame
,
242
, p.
112176
.10.1016/j.combustflame.2022.112176
8.
Kornilov
,
V. N.
,
Schreel
,
K. R.
, and
De Goey
,
L. P.
,
2007
, “
Experimental Assessment of the Acoustic Response of Laminar Premixed Bunsen Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1239
1246
.10.1016/j.proci.2006.07.079
9.
Mejia
,
D.
,
Miguel-Brebion
,
M.
, and
Selle
,
L.
,
2016
, “
On the Experimental Determination of Growth and Damping Rates for Combustion Instabilities
,”
Combust. Flame
,
169
, pp.
287
296
.10.1016/j.combustflame.2016.05.004
10.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
,
2000
, “
Theoretical and Experimental Determination of the Flame Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
765
773
.10.1016/S0082-0784(00)80279-9
11.
Birbaud
,
A. L.
,
Durox
,
D.
, and
Candel
,
S.
,
2006
, “
Upstream Flow Dynamics of a Laminar Premixed Conical Flame Submitted to Acoustic Modulations
,”
Combust. Flame
,
146
(
3
), pp.
541
552
.10.1016/j.combustflame.2006.05.001
12.
Cuquel
,
A.
,
Durox
,
D.
, and
Schuller
,
T.
,
2013
, “
Impact of Flame Base Dynamics on the Non-Linear Frequency Response of Conical Flames
,”
C. R. - Mec.
,
341
(
1–2
), pp.
171
180
.10.1016/j.crme.2012.11.004
13.
Schuermans
,
B.
,
Guethe
,
F.
, and
Mohr
,
W.
,
2010
, “
Optical Transfer Function Measurements for Technically Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
081501
.10.1115/1.3124663
14.
Shreekrishna
,
V. A.
, and
Lieuwen
,
T.
,
2013
, “
Flame Response to Equivalence Ratio fluctuations - Relationship Between Chemiluminescence and Heat Release
,”
Int. J. Spray Combust. Dyn.
,
5
(
4
), pp.
329
358
.10.1260/1756-8277.5.4.329
15.
Peterleithner
,
J.
,
Stadlmair
,
N. V.
,
Woisetschläger
,
J.
, and
Sattelmayer
,
T.
,
2016
, “
Analysis of Measured Flame Transfer Functions With Locally Resolved Density Fluctuation and OH-Chemiluminescence Data
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
031504
.10.1115/1.4031346
16.
Paschereit
,
C. O.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
,
1999
, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME
Paper No. 99-GT-133.10.1115/99-GT-133
17.
Treleaven
,
N. C. W.
,
Fischer
,
A.
,
Lahiri
,
C.
,
Staufer
,
M.
,
Garmory
,
A.
, and
Page
,
G.
,
2021
, “
The Effects of Forcing Direction on the Flame Transfer Function of a Lean-Burn Spray Flame
,”
ASME
Paper No. GT2021-59553.10.1115/GT2021-59553
18.
Fischer
,
A.
, and
Lahiri
,
C.
,
2021
, “
Ranking of Aircraft Fuel-Injectors Regarding Low Frequency Thermoacoustics Based on an Energy Balance Method
,”
ASME
Paper No. GT2021-59561.10.1115/GT2021-59561
19.
Munjal
,
M. L.
, and
Doige
,
A. G.
,
1990
, “
Theory for of a Two Source-Location Parameters Element Method of an Experimental Evaluation Four-Pole
,”
J. Sound Vib.
,
141
(
2
), pp.
323
333
.10.1016/0022-460X(90)90843-O
20.
Ghani
,
A.
,
Boxx
,
I.
, and
Noren
,
C.
,
2020
, “
Data-Driven Identification of Nonlinear Flame Models
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121015
.10.1115/1.4049071
21.
Ghani
,
A.
, and
Albayrak
,
A.
,
2023
, “
From Pressure Time Series Data to Flame Transfer Functions: A Framework for Perfectly Premixed Swirling Flames
,”
ASME J. Eng. Gas Turbines Power
,
145
(
1
), p. 011005.10.1115/1.4055724
22.
Gant
,
F.
,
Ghirardo
,
G.
,
Cuquel
,
A.
, and
Bothien
,
M. R.
,
2022
, “
Delay Identification in Thermoacoustics
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021005
.10.1115/1.4052060
23.
Juniper
,
M. P.
, and
Yoko
,
M.
,
2022
, “
Generating a Physics-Based Quantitatively-Accurate Model of an Electrically-Heated Rijke Tube With Bayesian Inference
,”
J. Sound Vib.
,
535
, p.
117096
.10.1016/j.jsv.2022.117096
24.
Yoko
,
M.
, and
Juniper
,
M. P.
,
2024
, “
Optimal Experiment Design With Adjoint-Accelerated Bayesian Inference
,”
Data-Centric Eng.
, 5, p. e17.10.1017/dce.2024.16
25.
Yoko
,
M.
, and
Juniper
,
M. P.
,
2024
, “
Adjoint-Accelerated Bayesian Inference Applied to the Thermoacoustic Behaviour of a Ducted Conical Flame
,”
J. Fluid Mech.
,
985
, p.
A38
.10.1017/jfm.2024.276
26.
Noiray
,
N.
,
2017
, “
Linear Growth Rate Estimation From Dynamics and Statistics of Acoustic Signal Envelope in Turbulent Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041503
.10.1115/1.4034601
27.
Noiray
,
N.
, and
Denisov
,
A.
,
2017
, “
A Method to Identify Thermoacoustic Growth Rates in Combustion Chambers From Dynamic Pressure Time Series
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3843
3850
.10.1016/j.proci.2016.06.092
28.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2010
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(
9
), pp.
1698
1717
.10.1016/j.combustflame.2010.02.011
29.
Moeck
,
J. P.
,
Bourgouin
,
J. F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.10.1016/j.combustflame.2012.04.002
30.
Moeck
,
J. P.
,
Bourgouin
,
J. F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Tomographic Reconstruction of Heat Release Rate Perturbations Induced by Helical Modes in Turbulent Swirl Flames
,”
Exp. Fluids
,
54
(
4
), p.
1498
.10.1007/s00348-013-1498-2
31.
Li
,
J.
,
Durox
,
D.
,
Richecoeur
,
F.
, and
Schuller
,
T.
,
2015
, “
Analysis of Chemiluminescence, Density and Heat Release Rate Fluctuations in Acoustically Perturbed Laminar Premixed Flames
,”
Combust. Flame
,
162
(
10
), pp.
3934
3945
.10.1016/j.combustflame.2015.07.031
32.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
,
134
(
1–2
), pp.
21
34
.10.1016/S0010-2180(03)00042-7
33.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2023
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, Version 3.0.0, accessed Oct. 9, 2024, https://www.cantera.org
34.
Chu
,
B. T.
,
1965
, “
On the Energy Transfer to Small Disturbances in Fluid Flow (Part I)
,”
Acta Mech.
,
1
(
3
), pp.
215
234
.10.1007/BF01387235
35.
Norris
,
A. N.
, and
Sheng
,
I. C.
,
1989
, “
Acoustic Radiation From a Circular Pipe With an Infinite Flange
,”
J. Sound Vib.
,
135
(
1
), pp.
85
93
.10.1016/0022-460X(89)90756-6
36.
Zorumski
,
W. E.
,
1973
, “
Generalized Radiation Impedances and Reflection Coefficients of Circular and Annular Ducts
,”
J. Acoust. Soc. Am.
,
54
(
6
), pp.
1667
1673
.10.1121/1.1914466
37.
Munt
,
R. M.
,
1977
, “
The Interaction of Sound With a Subsonic Jet Issuing From a Semi-Infinite Cylindrical Pipe
,”
J. Fluid Mech.
,
83
(
4
), pp.
609
640
.10.1017/S0022112077001384
38.
Levine
,
H.
, and
Schwinger
,
J.
,
1948
, “
On the Radiation of Sound From an Unflanged Circular Pipe
,”
Phys. Rev.
,
73
(
4
), pp.
383
406
.10.1103/PhysRev.73.383
39.
Selamet
,
A.
,
Ji
,
Z. L.
, and
Kach
,
R. A.
,
2001
, “
Wave Reflections From Duct Terminations
,”
J. Acoust. Soc. Am.
,
109
(
4
), pp.
1304
1311
.10.1121/1.1348298
40.
Rayleigh
,
J. W. S. B.
,
1896
,
The Theory of Sound
, Vol.
2
,
Macmillan
, New York.
41.
Tijdeman
,
H.
,
1975
, “
On the Propagation of Sound Waves in Cylindrical Tubes
,”
J. Sound Vib.
,
39
(
1
), pp.
1
33
.10.1016/S0022-460X(75)80206-9
42.
MacKay
,
D. J. C.
,
2003
,
Information Theory, Inference, and Learning Algorithms
,
Cambridge University Press
, Cambridge, UK.
43.
Giannotta
,
A.
,
Yoko
,
M.
,
Cherubini
,
S.
,
De Palmo
,
P.
, and
Juniper
,
M.
,
2023
, “
Bayesian Data Assimilation of Acoustically Forced Laminar Premixed Conical Flames
,”
Symposium on Thermoacoustics in Combustion
,
Zurich, Switzerland
, Sept., pp.
11
14
.
44.
Giles
,
M. B.
, and
Pierce
,
N. A.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow, Turbul. Combust.
,
65
(
3/4
), pp.
393
415
.10.1023/A:1011430410075
45.
Luchini
,
P.
, and
Bottaro
,
A.
,
2014
, “
Adjoint Equations in Stability Analysis
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
493
517
.10.1146/annurev-fluid-010313-141253
46.
Jeffreys
,
H.
,
1973
,
Scientific Inference
, 3rd ed.,
Cambridge University Press
, Cambridge, UK.
47.
van der Vaart
,
A. W.
,
1998
,
Asymptotic Statistics
,
Cambridge University Press
, Cambridge, UK.
48.
Zheng
,
J.
,
Fischer
,
A.
,
Lahiri
,
C.
,
Yoko
,
M.
, and
Juniper
,
M. P.
,
2024
, “
Bayesian Data Assimilation in Cold Flow Experiments on an Industrial Thermoacoustic Rig
,”
ASME
Paper No. GT2024-122656.10.1115/GT2024-122656
You do not currently have access to this content.