Abstract

High-temperature heat pumps (HTHPs) are becoming increasingly relevant in the industry as they represent a promising solution for decarbonizing industrial heat. These technologies can enable the electrification of industrial processes by exploiting electricity from renewables to provide process heat at temperatures above 250 °C, as in the case of emerging Brayton-based HTHPs. To succeed in this purpose, HTHPs must also ensure operational flexibility, which entails the ability to operate safely under varying loads and promptly respond to fluctuations in demand, while maintaining high efficiencies. Moreover, the ability to provide large flexible electric loads to transmission system operators has the potential to unlock innovative business cases and further promote the use of these systems. Common control strategies for achieving this include employing bypass mechanisms, fluid inventory control, and adjusting turbomachinery rotational speeds. Despite their variety, the simultaneous use of such control strategies is often limited as they may lead to significantly different system behaviors, both in terms of transient and steady performance. In this paper, rotational speed and fluid inventory control are examined from a transient perspective to maintain the desired sink temperature while regulating the thermal load of a novel Brayton-based HTHP. A comprehensive dynamic model of the system is proposed and leveraged to numerically test the two control approaches, aiming to provide insights for forthcoming experimental investigation. Results indicate that rotational speed control leads to negligible sink temperature residuals, while fluid inventory control better preserves the HTHP performances for varying temperature glides.

References

1.
IEA
,
2022
, “
Heating
,” International Energy Agency, Paris, France, accessed Jan. 1, 2024, https://www.iea.org/reports/heating
2.
United Nations
, 2015, “
The Paris Agreement
,” United Nations, New York, accessed Sept. 11, 2024, https://treaties.un.org/doc/Treaties/2016/02/20160215%2006-03%20PM/Ch_XXVII-7-d.pdf
3.
Arpagaus
,
C.
,
Bless
,
F.
,
Uhlmann
,
M.
,
Schiffmann
,
J.
, and
Bertsch
,
S. S.
,
2018
, “
High Temperature Heat Pumps: Market Overview, State of the Art, Research Status, Refrigerants, and Application Potentials
,”
Energy
,
152
, pp.
985
1010
.10.1016/j.energy.2018.03.166
4.
Jesper
,
M.
,
Schlosser
,
F.
,
Pag
,
F.
,
Walmsley
,
T. G.
,
Schmitt
,
B.
, and
Vajen
,
K.
,
2021
, “
Large-Scale Heat Pumps: Uptake and Performance Modelling of Market-Available Devices
,”
Renewable Sustainable Energy Rev.
,
137
, p.
110646
.10.1016/j.rser.2020.110646
5.
Thekdi
,
A.
, and
Nimbalkar
,
S. U.
,
2015
, “
Industrial Waste Heat Recovery—Potential Applications, Available Technologies and Crosscutting R&D Opportunities
,” Oak Ridge National Lab. (ORNL), Oak Ridge, TN, Report No.
ORNL/TM-2014/622; ED2701000; CEED063
.https://info.ornl.gov/sites/publications/files/Pub52987.pdf
6.
Bamigbetan
,
O.
,
Eikevik
,
T. M.
,
Nekså
,
P.
, and
Bantle
,
M.
,
2017
, “
Review of Vapour Compression Heat Pumps for High Temperature Heating Using Natural Working Fluids
,”
Int. J. Refrig.
,
80
, pp.
197
211
.10.1016/j.ijrefrig.2017.04.021
7.
Jiang
,
J.
,
Hu
,
B.
,
Wang
,
R. Z.
,
Deng
,
N.
,
Cao
,
F.
, and
Wang
,
C. C.
,
2022
, “
A Review and Perspective on Industry High-Temperature Heat Pumps
,”
Renewable Sustainable Energy Rev.
,
161
, p.
112106
.10.1016/j.rser.2022.112106
8.
Wolf
,
S.
, and
Blesl
,
M.
,
2016
, “
Model-Based Quantification of the Contribution of Industrial Heat Pumps to the European Climate Change Mitigation Strategy
,”
ECEEE Industrial Summer Study Proceedings
,
Berlin, Germany
, Sept. 12–14, pp.
477
487
.
9.
Marina
,
A.
,
Spoelstra
,
S.
,
Zondag
,
H. A.
, and
Wemmers
,
A. K.
,
2021
, “
An Estimation of the European Industrial Heat Pump Market Potential
,”
Renewable Sustainable Energy Rev.
,
139
, p.
110545
.10.1016/j.rser.2020.110545
10.
Vieren
,
E.
,
Demeester
,
T.
,
Beyne
,
W.
,
Arteconi
,
A.
,
De Paepe
,
M.
, and
Lecompte
,
S.
,
2023
, “
The Thermodynamic Potential of High-Temperature Transcritical Heat Pump Cycles for Industrial Processes With Large Temperature Glides
,”
Appl. Therm. Eng.
,
234
, p.
121197
.10.1016/j.applthermaleng.2023.121197
11.
Zühlsdorf
,
B.
,
Poulsen
,
J. L.
,
Dusek
,
S.
,
Wilk
,
V.
,
Krämer
,
J.
,
Rieberer
,
R.
,
Verdnik
,
M.
, et al.,
2023
, “
High-Temperature Heat Pumps. Task 1—Technologies: Task Report
,” IEA Heat Pump Centre, Borås, Sweden, Report No. HPT-AN58-2.
12.
Angelino
,
G.
, and
Invernizzi
,
C.
,
1995
, “
Prospects for Real-Gas Reversed Brayton Cycle Heat Pumps
,”
Int. J. Refrig.
,
18
(
4
), pp.
272
280
.10.1016/0140-7007(95)00005-V
13.
Fleming
,
J. S.
,
Li
,
L.
, and
Van Der Wekken
,
B. J. C.
,
1998
, “
Air Cycle Cooling and Heating Part II: A Mathematical Model for the Transient Behaviour of Fixed Matrix Regenerators
,”
Int. J. Energy Res.
,
22
(
5
), pp.
463
476
.10.1002/(SICI)1099-114X(199804)22:5<463::AID-ER386>3.0.CO;2-A
14.
Braun
,
J. E.
,
Bansal
,
P. K.
, and
Groll
,
E. A.
,
2002
, “
Energy Efficiency Analysis of Air Cycle Heat Pump Dryers
,”
Int. J. Refrig.
,
25
(
7
), pp.
954
965
.10.1016/S0140-7007(01)00097-4
15.
White
,
A. J.
,
2009
, “
Thermodynamic Analysis of the Reverse Joule–Brayton Cycle Heat Pump for Domestic Heating
,”
Appl. Energy
,
86
(
11
), pp.
2443
2450
.10.1016/j.apenergy.2009.02.012
16.
Swift
,
W. L.
,
Zagarola
,
M. V.
,
Nellis
,
G. F.
,
McCormick
,
J. A.
,
Sixsmith
,
H.
, and
Gibbon
,
J. A.
,
1999
, “
Developments in Turbo Brayton Technology for Low Temperature Applications
,”
Cryogenics
,
39
(
12
), pp.
989
995
.10.1016/S0011-2275(99)00117-4
17.
Gai
,
L.
,
Varbanov
,
P. S.
,
Walmsley
,
T. G.
, and
Klemeš
,
J. J.
,
2020
, “
Critical Analysis of Process Integration Options for Joule-Cycle and Conventional Heat Pumps
,”
Energies
,
13
(
3
), p.
635
.10.3390/en13030635
18.
Zühlsdorf
,
B.
,
Bühler
,
F.
,
Bantle
,
M.
, and
Elmegaard
,
B.
,
2019
, “
Analysis of Technologies and Potentials for Heat Pump-Based Process Heat Supply Above 150 °C
,”
Energy Convers. Manage.: X
,
2
, p.
100011
.10.1016/j.ecmx.2019.100011
19.
Oehler
,
J.
,
Tran
,
A. P.
, and
Stathopoulos
,
P.
,
2022
, “
Simulation of a Safe Start-Up Maneuver for a Brayton Heat Pump
,”
ASME
Paper No. GT2022-79399.10.1115/GT2022-79399
20.
Oehler
,
J.
,
Gollasch
,
J.
,
Tran
,
A. P.
, and
Nicke
,
E.
,
2021
, “
Part Load Capability of a High Temperature Heat Pump With Reversed Brayton Cycle
,” 13th IEA Heat Pump Conference 2021 (
HPC2020
) Conference Proceedings,
Jeju, Korea
,
Apr. 26–29
, p.
12
.https://elib.dlr.de/145225/1/HPC2020final_DLR_Oehler_20210114.pdf
21.
Openshaw
,
F.
,
Estrine
,
E.
, and
Croft
,
M.
,
1976
, “
Control of a Gas Turbine HTGR
,”
ASME
Paper No. 76-GT-97.10.1115/76-GT-97
22.
Oh
,
B. S.
, and
Lee
,
J. I.
,
2019
, “
Study of Autonomous Control System for S-CO2 Power Cycle
,”
Third European Supercritical CO2 Conference
,
Paris, France
,
Sept. 19–20
, pp.
345
352
.https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00070588/Oh_Lee_Study_autonomous_control_system.pdf
23.
Marchionni
,
M.
,
Bianchi
,
G.
, and
Tassou
,
S. A.
,
2021
, “
Transient Analysis and Control of a Heat to Power Conversion Unit Based on a Simple Regenerative Supercritical CO2 Joule-Brayton Cycle
,”
Appl. Therm. Eng.
,
183
, p.
116214
.10.1016/j.applthermaleng.2020.116214
24.
Frate
,
G. F.
,
Paternostro
,
L.
,
Ferrari
,
L.
, and
Desideri
,
U.
,
2022
, “
Off-Design of a Pumped Thermal Energy Storage Based on Closed Brayton Cycles
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021016
.10.1115/1.4052426
25.
Frate
,
G. F.
,
Pettinari
,
M.
,
Di Pino Incognito
,
E.
,
Costanzi
,
R.
, and
Ferrari
,
L.
,
2022
, “
Dynamic Modelling of a Brayton PTES System
,”
ASME
Paper No. GT2022-83445.10.1115/GT2022-83445
26.
The MathWorks Inc
.,
2022
, “
MATLAB Version: 9.13.0 (R2022b)
,” The MathWorks, Natick, MA.
27.
Lemmon
,
E. W.
,
Bell
,
I. H.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2018
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology
,” National Institute of Standards and Technology, Gaithersburg, MD.
28.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
29.
The MathWorks Inc
., 2022, “
Simscape™ Fluids™ Reference
,”
The MathWorks
,
Natick, MA
, accessed Jan. 1, 2024, https://it.mathworks.com/help/pdf_doc/hydro/hydro_ref.pdf
30.
Holman
,
J. P.
,
2002
,
Heat Transfer
,
McGraw-Hill
,
New York
.
31.
Ferrari
,
L.
,
Pettinari
,
M.
,
Frate
,
G. F.
,
Tran
,
A. P.
,
Oehler
,
J.
, and
Stathopoulos
,
P.
,
2023
, “
Transient Analysis and Control of a Brayton Heat Pump During Start-Up
,” 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (
ECOS 2023
),
Las Palmas De Gran Canaria, Spain
, June 25–30, pp.
839
850
.https://www.proceedings.com/content/069/069564-0076open.pdf
32.
Pettinari
,
M.
,
Frate
,
G. F.
,
Kyprianidis
,
K.
, and
Ferrari
,
L.
,
2023
, “
Dynamic Modelling and Part-Load Behavior of a Brayton Heat Pump
,” 64th International Conference of Scandinavian Simulation Society (
SIMS 2023
), Västerås, Sweden, Sept. 25–28, pp.
254
261
.10.3384/ecp200033
33.
Pettinari
,
M.
,
Frate
,
G. F.
,
Tran
,
A. P.
,
Oehler
,
J.
,
Stathopoulos
,
P.
,
Kyprianidis
,
K.
, and
Ferrari
,
L.
,
2024
, “
Impact of the Regulation Strategy on the Transient Behavior of a Brayton Heat Pump
,”
Energies
,
17
(
5
), p.
1020
.10.3390/en17051020
34.
Jensen
,
J. K.
,
Ommen
,
T.
,
Reinholdt
,
L.
,
Markussen
,
W. B.
, and
Elmegaard
,
B.
,
2018
, “
Heat Pump COP, Part 2: Generalized COP Estimation of Heat Pump Processes
,”
13th IIR Gustav Lorentzen Conference on Natural Refrigerants (GL2018)
,
Valencia, Spain
,
June 18–20
, pp.
1136
1145
.10.18462/iir.gl.2018.1386
You do not currently have access to this content.