Abstract

The utilization of renewable energy sources is pivotal for future energy sustainability. However, the effective utilization of this energy in marine environments necessitates the implementation of energy storage systems to compensate for energy losses induced by intermittent power usage. Underwater compressed air energy storage (UWCAES) is a cost-effective and emission-free method for storing energy underwater. This technology has proven to be effective and viable, and it offers significant benefits in terms of energy efficiency and sustainability. In this paper, a cylindrical composite structure UWCAES tank is designed. At first, the materials and shapes of the different forms of air containers were evaluated, and the relationship between container diameter, length, and number of air containers was analyzed on the basis of the range of energy storage densities for different kinds of systems. Subsequently, the materials to be applied in the tanks were investigated and selected according to the actual working conditions of the system. Eventually, finite element models (FEMs) and prediction formula were developed, and the influence of changes in the thicknesses of the steel reinforcement was discussed. The results demonstrated that the storage tank possesses adequate environmental resistance and load-bearing capacity, which can provide a reference for its practical engineering implementation.

References

1.
Hagstrøm
,
E.
,
Norheim
,
I.
, and
Uhlen
,
K.
,
2005
, “
Large‐Scale Wind Power Integration in Norway and Impact on Damping in the Nordic Grid
,”
Wind Energy
,
8
(
3
), pp.
375
384
.10.1002/we.168
2.
Arellano-Prieto
,
Y.
,
Chavez-Panduro
,
E.
,
Salvo Rossi
,
P.
, and
Finotti
,
F.
,
2022
, “
Energy Storage Solutions for Offshore Applications
,”
Energies
,
15
(
17
), p.
6153
.10.3390/en15176153
3.
Adib
,
M.
,
Nasiri
,
F.
, and
Haghighat
,
F.
,
2023
, “
Integrating Wind Energy and Compressed Air Energy Storage for Remote Communities: A Bi-Level Programming Approach
,”
J. Energy Storage
,
72
, p.
108496
.10.1016/j.est.2023.108496
4.
Liu
,
Z.
,
Liu
,
X.
,
Yang
,
S.
,
Hooman
,
K.
, and
Yang
,
X.
,
2021
, “
Assessment Evaluation of a Trigeneration System Incorporated With an Underwater Compressed Air Energy Storage
,”
Appl. Energy
,
303
, p.
117648
.10.1016/j.apenergy.2021.117648
5.
Carriveau
,
R.
,
Ebrahimi
,
M.
,
Ting
,
D. S. K.
, and
McGillis
,
A.
,
2019
, “
Transient Thermodynamic Modeling of an Underwater Compressed Air Energy Storage Plant: Conventional Versus Advanced Exergy Analysis
,”
Sustainable Energy Technol. Assess.
,
31
, pp.
146
154
.10.1016/j.seta.2018.12.003
6.
Cheung
,
B.
,
Cao
,
N.
,
Carriveau
,
R.
, and
Ting
,
D. S. K.
,
2012
, “
Distensible Air Accumulators as a Means of Adiabatic Underwater Compressed Air Energy Storage
,”
Int. J. Environ. Stud.
,
69
(
4
), pp.
566
577
.10.1080/00207233.2012.699360
7.
Pimm
,
A. J.
,
Garvey
,
S. D.
, and
de Jong
,
M.
,
2014
, “
Design and Testing of Energy Bags for Underwater Compressed Air Energy Storage
,”
Energy
,
66
, pp.
496
508
.10.1016/j.energy.2013.12.010
8.
Mas
,
J.
, and
Rezola
,
J. M.
,
2016
, “
Tubular Design for Underwater Compressed Air Energy Storage
,”
J. Energy Storage
,
8
, pp.
27
34
.10.1016/j.est.2016.08.006
9.
BaroMar, 2023, “
BaroMar’s Energy Storage Solution Enables Renewable Energy to Become Base Load
,” BaroMar, Israel, accessed Dec. 26, 2023, https://www.baro-mar.com/
10.
Wang
,
Z.
,
Carriveau
,
R.
,
Ting
,
D. S. K.
,
Xiong
,
W.
, and
Wang
,
Z.
,
2019
, “
A Review of Marine Renewable Energy Storage
,”
Int. J. Energy Res.
,
43
(
12
), pp.
6108
6150
.10.1002/er.4444
11.
He
,
W.
, and
Wang
,
J.
,
2018
, “
Optimal Selection of Air Expansion Machine in Compressed Air Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
87
, pp.
77
95
.10.1016/j.rser.2018.01.013
12.
Wang
,
Z.
,
Wang
,
J.
,
Cen
,
H.
,
Ting
,
D. S. K.
,
Carriveau
,
R.
, and
Xiong
,
W.
,
2021
, “
Large-Eddy Simulation of a Full-Scale Underwater Energy Storage Accumulator
,”
Ocean Eng.
,
234
, p.
109184
.10.1016/j.oceaneng.2021.109184
13.
Wang
,
Z.
,
Ting
,
D. S. K.
,
Carriveau
,
R.
,
Xiong
,
W.
, and
Wang
,
Z.
,
2016
, “
Design and Thermodynamic Analysis of a Multi-Level Underwater Compressed Air Energy Storage System
,”
J. Energy Storage
,
5
, pp.
203
211
.10.1016/j.est.2016.01.002
14.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2021
, “
Comparative Study of Various Constant-Pressure Compressed Air Energy Storage Systems Based on Energy and Exergy Analysis
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p. 052001.10.1115/1.4048506
15.
Chen
,
L.
,
Wang
,
Y.
,
Xie
,
M.
,
Ye
,
K.
, and
Mohtaram
,
S.
,
2021
, “
Energy and Exergy Analysis of Two Modified Adiabatic Compressed Air Energy Storage (A-CAES) System for Cogeneration of Power and Cooling on the Base of Volatile Fluid
,”
J. Energy Storage
,
42
, p.
103009
.10.1016/j.est.2021.103009
16.
Guo
,
H.
,
Xu
,
Y.
,
Zhu
,
Y.
,
Zhang
,
X.
,
Yin
,
Z.
, and
Chen
,
H.
,
2021
, “
Coupling Properties of Thermodynamics and Economics of Underwater Compressed Air Energy Storage Systems With Flexible Heat Exchanger Model
,”
J. Energy Storage
,
43
, p.
103198
.10.1016/j.est.2021.103198
17.
Hu
,
S.
,
Xu
,
W.
,
Cai
,
M.
, and
Jia
,
G.
,
2022
, “
Energy Efficiency and Power Density Analysis of a Tube Array Liquid Piston Air Compressor/Expander for Compressed Air Energy Storage
,”
J. Energy Storage
,
55
, p.
105674
.10.1016/j.est.2022.105674
18.
Yin
,
H.
,
2023
, “
Thermodynamic Analysis of an Advanced Adiabatic Compressed-Air Energy Storage System Coupled With Molten Salt Heat and Storage-Organic Rankine Cycle
,”
Energy Storage Sci. Technol.
,
12
(
12
), pp.
3749
3760
.10.19799/j.cnki.2095-4239.2023.0548
19.
Nabat
,
M. H.
,
Habibzadeh
,
M.
,
Alsagri
,
A. S.
, and
Arabkoohsar
,
A.
,
2024
, “
An Investigation and Multi-Criteria Optimization of an Innovative Compressed Air Energy Storage
,”
J. Energy Storage
,
76
, p.
109645
.10.1016/j.est.2023.109645
20.
Wang
,
H.
,
Zheng
,
T.
,
Sang
,
Z.
, and
Krakauer
,
B. W.
,
2021
, “
Burst Pressures of Thin-Walled Cylinders Constructed of Steel Exhibiting a Yield Plateau
,”
Int. J. Pressure Vessels Piping
,
193
, p.
104483
.10.1016/j.ijpvp.2021.104483
21.
Wei
,
D.
,
An
,
C.
,
Wu
,
C.
,
Duan
,
M.
, and
Estefen
,
S. F.
,
2022
, “
Torsional Structural Behavior of Composite Rubber Hose for Offshore Applications
,”
Appl. Ocean Res.
,
128
, p.
103333
.10.1016/j.apor.2022.103333
22.
Tonatto
,
M. L. P.
,
Tita
,
V.
,
Araujo
,
R. T.
,
Forte
,
M. M. C.
, and
Amico
,
S. C.
,
2017
, “
Parametric Analysis of an Offloading Hose Under Internal Pressure Via Computational Modeling
,”
Mar. Struct.
,
51
, pp.
174
187
.10.1016/j.marstruc.2016.10.008
23.
Nakajima
,
Y.
,
2019
,
Advanced Tire Mechanics
,
Springer Singapore Pte. Limited
,
Singapore
.
24.
Zhu
,
X.-K.
,
Wiersma
,
B.
,
Johnson
,
W. R.
, and
Sindelar
,
R.
,
2023
, “
Burst Pressure Solutions of Thin and Thick-Walled Cylindrical Vessels
,”
ASME J. Pressure Vessel Technol.
,
145
(
4
), p.
041303
.10.1115/1.4062334
25.
Zhu
,
X.-K.
,
2016
, “
Strength Criteria Versus Plastic Flow Criteria Used in Pressure Vessel Design and Analysis
,”
ASME J. Pressure Vessel Technol.
,
138
(
4
), p.
041402
.10.1115/1.4031284
You do not currently have access to this content.