Abstract

Hybrid systems (HS) are highly attractive in power generation due to their potential for higher power outputs and efficiencies by integrating different technologies. Among solid oxide fuel cell (SOFC) plants, the SOFC-Micro-Gas Turbine (mGT) system is particularly innovative. In this setup, the SOFC replaces the mGT combustion chamber, with an afterburner completing fuel combustion before the expander. Various configurations and control systems have been explored over the years, and prototypes have demonstrated satisfactory efficiency. However, these systems have predominantly used NG and Biogas, which do not achieve zero carbon emissions. The growing global demand for carbon-free energy production is increasing, highlighting the importance of alternative fuels in the power generation sector: among them, thanks to its chemical and physical properties, ammonia is gaining more and more interest. This work investigates an innovative ammonia-to-power system based on an SOFC-mGT HS, focusing on thermodynamic parameters, system features, and technical and environmental challenges. A MATLAB/Simulink model, built on a validated HS model fueled by NG, was developed to analyze the new system configuration. This configuration replaces the SOFC prereformer with an ammonia cracker, allowing for the exploration of anode gas recirculation effects and optimal system design. Key operating parameters such as anodic recirculation factor, fuel utilization, performance, and gas turbine characteristics are discussed. Finally, a comparison is made between hybrid systems and mGTs powered by methane, biogas, and ammonia.

References

1.
Ojelade
,
O. A.
,
Zaman
,
S. F.
, and
Ni
,
B.-J.
,
2023
, “
Green Ammonia Production Technologies: A Review of Practical Progress
,”
J. Environ. Manage.
,
342
, p.
118348
.10.1016/j.jenvman.2023.118348
2.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W. I. F.
, and
Bowen
,
P. J.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
3.
Chen
,
S.
,
Perathoner
,
S.
,
Ampelli
,
C.
, and
Centi
,
G.
,
2019
, “
Chapter 2 - Electrochemical Dinitrogen Activation: To Find a Sustainable Way to Produce Ammonia
,”
Studies in Surface Science and Catalysis
, Vol.
178
,
S.
Albonetti
,
S.
Perathoner
, and
E. A.
Quadrelli
, eds.,
Elsevier
, Amsterdam, The Netherlands, pp.
31
46
.
4.
EU policy
, “
Strategy and Legislation for 2050 Environmental, Energy and Climate Targets
,” European Commission, Brussels, Belgium, accessed Oct. 17, 2024, https://commission.europa.eu/energy-climate-change-environment/overall-targets-and-reporting/2050-targets_en
5.
Ye
,
L.
,
Nayak-Luke
,
R.
,
Bañares-Alcántara
,
R.
, and
Tsang
,
E.
,
2017
, “
Reaction: “Green” Ammonia Production
,”
Chem
,
3
(
5
), pp.
712
714
.10.1016/j.chempr.2017.10.016
6.
Kojima
,
Y.
, and
Yamaguchi
,
M.
,
2022
, “
Ammonia as a Hydrogen Energy Carrier
,”
Int. J. Hydrogen Energy
,
47
(
54
), pp.
22832
22839
.10.1016/j.ijhydene.2022.05.096
7.
Christensen
,
C. H.
,
Johannessen
,
T.
,
Sørensen
,
R. Z.
, and
Nørskov
,
J. K.
,
2006
, “
Towards an Ammonia-Mediated Hydrogen Economy?
,”
Catal. Today
,
111
(
1–2
), pp.
140
144
.10.1016/j.cattod.2005.10.011
8.
Ohtomo
,
M.
,
Idota
,
Y.
,
Kasuga
,
S.
,
Yasui
,
Y.
,
Iki
,
N.
,
Kurata
,
O.
,
Inoue
,
T.
, and
Fan
,
Y.
, “
Experimental Investigation of the Stability of Liquid/Gaseous Ammonia-Fired Mono-Fuel Gas Turbine
,”
ASME
Paper No. GT2023-100755.10.1115/GT2023-100755
9.
Ávila
,
C. D.
,
Cardona
,
S.
,
Abdullah
,
M.
,
Younes
,
M.
,
Jamal
,
A.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2023
, “
Experimental Assessment of the Performance of a Commercial Micro Gas Turbine Fueled by Ammonia-Methane Blends
,”
Appl. Energy Combust. Sci.
,
13
, p.
100104
.https://api.semanticscholar.org/CorpusID:254387321
10.
Afif
,
A.
,
Radenahmad
,
N.
,
Cheok
,
Q.
,
Shams
,
S.
,
Kim
,
J. H.
, and
Azad
,
A. K.
,
2016
, “
Ammonia-Fed Fuel Cells: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
822
835
.10.1016/j.rser.2016.01.120
11.
Elkafas
,
A. G.
,
Rivarolo
,
M.
,
Gadducci
,
E.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2022
, “
Fuel Cell Systems for Maritime: A Review of Research Development, Commercial Products, Applications, and Perspectives
,”
Processes
,
11
(
1
), p.
97
.10.3390/pr11010097
12.
Comotti
,
M.
, and
Frigo
,
S.
,
2015
, “
Hydrogen Generation System for Ammonia–Hydrogen Fuelled Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
40
(
33
), pp.
10673
10686
.10.1016/j.ijhydene.2015.06.080
13.
Chellappa
,
A. S.
,
Fischer
,
C. M.
, and
Thomson
,
W. J.
,
2002
, “
Ammonia Decomposition Kinetics Over Ni-Pt/Al2O3 for PEM Fuel Cell Applications
,”
Appl. Catal., A
,
227
(
1–2
), pp.
231
240
.10.1016/S0926-860X(01)00941-3
14.
Xiao
,
H.
,
Valera-Medina
,
A.
, and
Bowen
,
P. J.
,
2017
, “
Study on Premixed Combustion Characteristics of co-Firing Ammonia/Methane Fuels
,”
Energy
,
140
(
1
), pp.
125
135
.10.1016/j.energy.2017.08.077
15.
Law
,
C. K.
,
2010
,
Combustion Physics
,
Cambridge University Press
, Cambridge, UK.
16.
Chanh
,
S. H.
,
Ho
,
K.
, and
Tian
,
Y.
,
2003
, “
Multi-Level Modeling of SOFC–Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
,
28
(
8
), pp.
889
900
.10.1016/S0360-3199(02)00160-X
17.
McPhail
,
S. J.
,
Aarva
,
A.
,
Devianto
,
H.
,
Bove
,
R.
, and
Moreno
,
A.
,
2011
, “
SOFC and MCFC: Commonalities and Opportunities for Integrated Research
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10337
10345
.10.1016/j.ijhydene.2010.09.071
18.
Bakalis
,
D. P.
, and
Stamatis
,
A. G.
,
2014
, “
Optimization Methodology of Turbomachines for Hybrid SOFC–GT Applications
,”
Energy
,
70
, pp.
86
94
.10.1016/j.energy.2014.03.093
19.
Chen
,
J.
,
Li
,
J.
,
Zhou
,
D.
,
Zhang
,
H.
, and
Weng
,
S.
,
2018
, “
Control Strategy Design for a SOFC-GT Hybrid System Equipped With Anode and Cathode Recirculation Ejectors
,”
Appl. Therm. Eng.
,
132
, pp.
67
79
.10.1016/j.applthermaleng.2017.12.079
20.
Corigliano
,
O.
,
De Lorenzo
,
G.
,
Fragiacomo
,
P.
, and
Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
,
2021
, “
Techno-Energy-Economic Sensitivity Analysis of Hybrid System Solid Oxide Fuel Cell/Gas Turbine
,”
AIMS Energy
,
9
(
5
), pp.
934
990
.10.3934/energy.2021044
21.
Corigliano
,
O.
,
Pagnotta
,
L.
, and
Fragiacomo
,
P.
,
2022
, “
On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review
,”
Sustainability
,
14
(
22
), p.
15276
.10.3390/su142215276
22.
Ferrari
,
M. L.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2019
, “
Microturbine-Based Test Rig for Emulation of SOFC Hybrid Systems
,”
E3S Web of Conferences, EDP Sciences
, Vol. 113, p.
02004
.10.1051/e3sconf/201911302004
23.
van Biert
,
L.
,
Visser
,
K.
, and
Aravind
,
P. V.
,
2020
, “
A Comparison of Steam Reforming Concepts in Solid Oxide Fuel Cell Systems
,”
Appl. Energy
,
264
, p.
114748
.10.1016/j.apenergy.2020.114748
24.
Huang
,
B.
,
Ye
,
X. F.
,
Wang
,
S. R.
,
Nie
,
H. W.
,
Shi
,
J.
,
Hu
,
Q.
,
Qian
,
J. Q.
,
Sun
,
X. F.
, and
Wen
,
T. L.
,
2006
, “
Performance of Ni/ScSZ Cermet Anode Modified by Coating With Gd0.2Ce0.8O2 for an SOFC Running on Methane Fuel
,”
J. Power Sources
,
162
(
2
), pp.
1172
1181
.10.1016/j.jpowsour.2006.07.068
25.
Staniforth
,
J.
, and
Kendall
,
K.
,
1998
, “
Biogas Powering a Small Tubular Solid Oxide Fuel Cell
,”
J. Power Sources
,
71
(
1–2
), pp.
275
277
.10.1016/S0378-7753(97)02762-6
26.
Mantelli
,
L.
,
De Campo
,
M.
,
Ferrari
,
M. L.
, and
Magistri
,
L.
,
2019
, “
Fuel Flexibility for a Turbocharged SOFC System
,”
Energy Proc.
,
158
, pp.
1974
1979
.10.1016/j.egypro.2019.01.454
27.
Yan
,
M.
,
Zeng
,
M.
,
Chen
,
Q.
, and
Wang
,
Q.
,
2012
, “
Numerical Study on Carbon Deposition of SOFC With Unsteady State Variation of Porosity
,”
Appl. Energy
,
97
, pp.
754
762
.10.1016/j.apenergy.2012.02.055
28.
Soto
,
H. J.
,
Lee
,
W-K.
,
Van Zee
,
J. W.
, and
Murthy
,
M.
,
2003
, “
Effect of Transient Ammonia Concentrations on PEMFC Performance
,”
Electrochem. Solid-State Lett.
,
6
(
7
), p.
A133
.10.1149/1.1574651
29.
Kim
,
J.-S.
, and
Kim
,
D.-Y.
,
2023
, “
Energy, Exergy, and Economic (3E) Analysis of SOFC-GT-ORC Hybrid Systems for Ammonia-Fueled Ships
,”
J. Mar. Sci. Eng.
,
11
(
11
), p.
2126
.10.3390/jmse11112126
30.
Sun
,
B.
,
Xu
,
Y.
,
Liu
,
Y.
,
Ya
,
Y.
,
Cheng
,
X.
,
Quan
,
Y.
,
Ding
,
H.
, and
Xie
,
J.
,
2023
, “
Numerical Design and Evaluation of Ammonia Fueled Solid Oxide Fuel Cell (SOFC) Power Systems With Different Integration Architecture: Efficiency, Power Density and Thermal Safety
,”
Energy Convers. Manage.
,
298
, p.
117804
.10.1016/j.enconman.2023.117804
31.
Adnan
,
A. I.
,
Ong
,
M. Y.
,
Nomanbhay
,
S.
,
Chew
,
K. W.
, and
Show
,
P. L.
,
2019
, “
Technologies for Biogas Upgrading to Biomethane: A Review
,”
Bioengineering
,
6
(
4
), p.
92
.10.3390/bioengineering6040092
32.
Ferrari
,
M. L.
,
Pascenti
,
M.
, and
Abrassi
,
A.
,
2019
, “
Test Rig for Emulation of Turbocharged SOFC Plants
,”
E3S Web of Conferences, EDP Sciences
, Vol. 113, p.
02001
.10.1051/e3sconf/201911302001
33.
Bagnerini
,
P.
,
Traverso
,
A.
, and
Mantelli
,
L.
,
2021
, “
Performance Analysis and Dynamics of Innovative SOFC Hybrid Systems Based on Turbocharger-Derived Machinery
,”
Ph.D. thesis
.https://www.academia.edu/76494917/Performance_analysis_and_dynamics_of_innovative_SOFC_hybrid_systems_based_on_turbocharger_derived_machinery
34.
Bellotti
,
D.
,
Anfosso
,
C.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2023
, “
Partially Cracked Ammonia for Micro-Gas Turbine Application
,”
ASME
Paper No. GT2023-105386.10.1115/GT2023-105386
35.
Musa
,
A.
,
Agina
,
A.
, and
Talbi
,
M.
,
2012
, “
Operating Conditions on the Performances of SOFC Fuelled With Methane
,”
International Conference on Renewable Energies and Power Quality
, Spain, Mar.
28
30
.https://icrepq.com/icrepq'12/776-musa.pdf
36.
de Haart
,
L. G. J.
,
Mougin
,
J.
,
Posdziech
,
O.
,
Kiviaho
,
J.
, and
Menzler
,
N. H.
,
2009
, “
Stack Degradation in Dependence of Operation Parameters; the Real-SOFC Sensitivity Analysis
,”
Fuel Cells
,
9
(
6
), pp.
794
804
.10.1002/fuce.200800146
37.
Chein
,
R.-Y.
,
Chen
,
Y.-C.
,
Chang
,
C.-S.
, and
Chung
,
J. N.
,
2010
, “
Numerical Modeling of Hydrogen Production From Ammonia Decomposition for Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
35
(
2
), pp.
589
597
.10.1016/j.ijhydene.2009.10.098
38.
Sorce
,
A.
,
Greco
,
A.
,
Magistri
,
L.
, and
Costamagna
,
P.
,
2014
, “
FDI Oriented Modeling of an Experimental SOFC System, Model Validation and Simulation of Faulty States
,”
Appl. Energy
,
136
, pp.
894
908
.10.1016/j.apenergy.2014.03.074
39.
Cinti
,
G.
,
Discepoli
,
G.
,
Sisani
,
E.
, and
Desideri
,
U.
,
2016
, “
SOFC Operating With Ammonia: Stack Test and System Analysis
,”
Int. J. Hydrogen Energy
,
41
(
31
), pp.
13583
13590
.10.1016/j.ijhydene.2016.06.070
40.
Hohloch
,
M.
,
Huber
,
A.
, and
Aigner
,
M.
,
2018
, “
Analysis of Operational Strategies of a SOFC/Micro Gas Turbine Hybrid Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081703
.10.1115/1.4038605
You do not currently have access to this content.