Abstract

This study aims at improving the classic sine-hyperbolic (Sinh) creep-damage model to predict minimum-creep-strain-rate (MCSR), rupture, damage, and creep deformation. The Sinh model employs a continuum-damage-mechanics-based framework to model secondary and tertiary creep regimes. In Sinh, the creep strain and damage rate equations exhibit an implicit threshold stress that arises during numerical optimization. Herein, the Sinh model is modified to include an explicit threshold strength as a material property and the tensile strength. Threshold strength is defined as the lower limit for creep activation at a given temperature. Stresses are applied below the threshold, resulting in infinite life. The advanced Sinh offers several advantages including a physical significance of stress ratios where the onset of creep is defined by threshold strength, a closed-form solution where the rate equations remain finite at any combination of stress and temperature, and adaptability in finite element analysis where the solution space remains numerically stable. Experimental creep data of 304 SS at multiple isotherms are gathered from prior literature. The advanced Sinh is calibrated to the MCSR and SR data of 304 SS. The calibration of threshold strength follows a standard procedure from literature and is observed to be realistic for stainless steel at elevated temperatures. The MCSR and SR predictions illustrate the Sigmoidal bend and demonstrate zero creep rate and infinite life at or below threshold strength. The creep deformation and damage predictions exhibit agreement with experimental data. The advanced Sinh is validated by employing finite element simulation to ensure the applicability of the model across a range of applications. The advanced Sinh improved creep response prediction and added physical realism to the model's framework.

References

1.
Krug
,
M. E.
, and
Dunand
,
D. C.
,
2011
, “
Modeling the Creep Threshold Stress Due to Climb of a Dislocation in the Stress Field of a Misfitting Precipitate
,”
Acta Mater.
,
59
(
13
), pp.
5125
5134
.10.1016/j.actamat.2011.04.044
2.
Marquis
,
E. A.
,
Seidman
,
D. N.
, and
Dunand
,
D. C.
,
2003
, “
Effect of Mg Addition on the Creep and Yield Behavior of an Al–Sc Alloy
,”
Acta Mater.
,
51
(
16
), pp.
4751
4760
.10.1016/S1359-6454(03)00288-X
3.
Zhao
,
X.
,
Niu
,
X.
,
Song
,
Y.
, and
Sun
,
Z.
,
2022
, “
Improvement of Creep Behavior Prediction Using Threshold Stress and Tensile Properties: Introduction of the TTC Relations
,”
Metall. Mater. Trans. A
,
53
(
9
), pp.
3441
3455
.10.1007/s11661-022-06759-2
4.
Song
,
K.
,
Zhao
,
L.
,
Xu
,
L.
,
Han
,
Y.
, and
Hao
,
K.
,
2022
, “
A Modified Energy Model Including Mean Stress and Creep Threshold Stress Effect for Creep–Fatigue Life Prediction
,”
Fatigue Fract. Eng. Mater. Struct.
,
45
(
5
), pp.
1299
1316
.10.1111/ffe.13661
5.
Cedro
,
V.
, III
,
2023
, “
On the Origin, Physical Basis and Numerical Stability of Creep Life Equations
,”
Mater. High Temp.
,
40
(
6
), pp.
492
505
.10.1080/09603409.2023.2290373
6.
Lu
,
Q.
,
Xu
,
W.
, and
Van Der Zwaag
,
S.
,
2014
, “
A Strain-Based Computational Design of Creep-Resistant Steels
,”
Acta Mater.
,
64
, pp.
133
143
.10.1016/j.actamat.2013.10.004
7.
Ule
,
B.
, and
Nagode
,
A.
,
2007
, “
A Model Based Creep Equation for 9Cr–1Mo–0·2V (P91 Type) Steel
,”
Mater. Sci. Technol.
,
23
(
11
), pp.
1367
1374
.10.1179/174328407X161187
8.
Benz
,
J. K.
,
Carroll
,
L. J.
,
Wright
,
J. K.
,
Wright
,
R. N.
, and
Lillo
,
T. M.
,
2014
, “
Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures
,”
Metall. Mater. Trans. A
,
45
(
7
), pp.
3010
3022
.10.1007/s11661-014-2244-y
9.
Nadai
,
A.
,
1938
, “
The Influence of Time Upon Creep, the Hyperbolic Sine Creep Law
,”
Stephen Timoshenko Anniversary Volume
,
The Macmillan
,
New York
.
10.
Evans
,
W. J.
, and
Harrison
,
G. F.
,
1979
, “
Validity of Friction Stress σo Measurements for High-Temperature Creep
,”
Met. Sci.
,
13
(
6
), pp.
346
350
.10.1179/msc.1979.13.6.346
11.
Garofalo
,
F.
,
Richmond
,
O.
,
Domis
,
W. F.
, and
Von Gemmingen
,
F.
,
1963
, “
Paper 30: Strain-Time, Rate-Stress and Rate-Temperature Relations During Large Deformations in Creep
,”
Proc. Inst. Mech. Eng., Conf. Proc.
,
178
(
1
), pp.
1
31
.10.1243/PIME_CONF_1963_178_010_02
12.
Garofalo
,
F.
,
1961
,
Resistance to Creep Deformation and Fracture in Metals and Alloys
,
ASTM International
, Philadelphia, PA.
13.
Gasdaska
,
C. J.
,
1994
, “
Tensile Creep in an In Situ Reinforced Silicon Nitride
,”
J. Am. Ceram. Soc.
,
77
(
9
), pp.
2408
2418
.10.1111/j.1151-2916.1994.tb04612.x
14.
Luecke
,
W. E.
, and
Wiederhorn
,
S. M.
,
1999
, “
A New Model for Tensile Creep of Silicon Nitride
,”
J. Am. Ceram. Soc.
,
82
(
10
), pp.
2769
2778
.10.1111/j.1151-2916.1999.tb02154.x
15.
Yang
,
W.
,
Zhang
,
Q.
,
Li
,
S.
, and
Wang
,
S.
,
2014
, “
Time-Dependent Behavior of Diabase and a Nonlinear Creep Model
,”
Rock Mech. Rock Eng.
,
47
(
4
), pp.
1211
1224
.10.1007/s00603-013-0478-4
16.
Dyson
,
B. F.
,
1988
, “
Creep and Fracture of Metals: Mechanisms and Mechanics
,”
Rev. Phys. Appl.
,
23
(
4
), pp.
605
613
.10.1051/rphysap:01988002304060500
17.
Othman
,
A. M.
,
Dyson
,
B. F.
,
Hayhurst
,
D. R.
, and
Lin
,
J.
,
1994
, “
Continuum Damage Mechanics Modelling of Circumferentially Notched Tension Bars Undergoing Tertiary Creep With Physically-Based Constitutive Equations
,”
Acta Metall. Mater.
,
42
(
3
), pp.
597
611
.10.1016/0956-7151(94)90256-9
18.
Haque
,
M. S.
,
2015
,
An Improved Sin-Hyperbolic Constitutive Model for Creep Deformation and Damage
,
The University of Texas at El Paso
,
El Paso, TX
.https://scholarworks.utep.edu/open_etd/1057/
19.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2015
, “
A Novel Sin-Hyperbolic Creep Damage Model to Overcome the Mesh Dependency of Classic Local Approach Kachanov-Rabotnov Model
,”
ASME
Paper No. IMECE2015-50427.10.1115/IMECE2015-50427
20.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2019
, “
Comparative Analysis of the Sine-Hyperbolic and Kachanov-Rabotnov Creep-Damage Models
,”
Int. J. Pressure Vessels Piping
,
171
, pp.
1
9
.10.1016/j.ijpvp.2019.02.001
21.
Stewart
,
C. M.
,
2013
, “
A Hybrid Constitutive Model for Creep, Fatigue, and Creep-Fatigue Damage
,”
Ph.D. dissertation
,
University of Central Florida
,
Orlando, FL
.https://momrg.cecs.ucf.edu/wp-content/uploads/2019/05/StewartC_PhD.pdf
22.
Chaboche
,
J.-L.
,
1984
, “
Anisotropic Creep Damage in the Framework of Continuum Damage Mechanics
,”
Nucl. Eng. Des.
,
79
(
3
), pp.
309
319
.10.1016/0029-5493(84)90046-3
23.
Hossain
,
M. A.
, and
Stewart
,
C. M.
,
2021
, “
A Probabilistic Creep Model Incorporating Test Condition, Initial Damage, and Material Property Uncertainty
,”
Int. J. Pressure Vessels Piping
,
193
, p.
104446
.10.1016/j.ijpvp.2021.104446
24.
Hossain
,
M. A.
,
Cottingham
,
J. R.
, and
Stewart
,
C. M.
,
2022
, “
An Extrema Approach to Probabilistic Creep Modeling in Finite Element Analysis
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011002
.10.1115/1.4052260
25.
Sahoo
,
K. C.
,
Goyal
,
S.
,
Ganesan
,
V.
,
Vanaja
,
J.
,
Reddy
,
G. V.
,
Padmanabhan
,
P.
, and
Laha
,
K.
,
2019
, “
Analysis of Creep Deformation and Damage Behaviour of 304HCu Austenitic Stainless Steel
,”
Mater. High Temp.
,
36
(
5
), pp.
388
403
.10.1080/09603409.2019.1586094
26.
Rohatgi
,
A.
,
2020
, “
WebPlotDigitizer: Version 4.4
,” WebPlotDigitizer, Pacifica, CA, accessed Oct. 4, 2024, https://apps.automeris.io/wpd4/
27.
Drevon
,
D.
,
Fursa
,
S. R.
, and
Malcolm
,
A. L.
,
2017
, “
Intercoder Reliability and Validity of WebPlotDigitizer in Extracting Graphed Data
,”
Behav. Modif.
,
41
(
2
), pp.
323
339
.10.1177/0145445516673998
28.
ASTM International
,
2018
, “
Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM E139-11
.https://www.astm.org/standards/e139
29.
Hossain
,
M. A.
,
Cano
,
J. A.
, and
Stewart
,
C. M.
,
2023
, “
Probabilistic Creep With the Wilshire–Cano–Stewart Model
,”
Fatigue Fract. Eng. Mater. Struct.
,
46
(
10
), pp.
4001
4019
.10.1111/ffe.14120
30.
Holdsworth
,
S.
,
2008
, “
The European Creep Collaborative Committee (ECCC) Approach to Creep Data Assessment
,”
ASME J. Pressure Vessel Technol.
,
130
(
2
), p.
024001
.10.1115/1.2894296
31.
Haque
,
M. S.
, and
Stewart
,
C. M.
,
2019
, “
The Disparate Data Problem: The Calibration of Creep Laws Across Test Type and Stress, Temperature, and Time Scales
,”
Theor. Appl. Fract. Mech.
,
100
, pp.
251
268
.10.1016/j.tafmec.2019.01.018
32.
Hossain
,
M. A.
,
Mireles
,
A. J.
, and
Stewart
,
C. M.
,
2022
, “
A Machine Learning Approach for Stress-Rupture Prediction of High Temperature Austenitic Stainless Steels
,”
ASME
Paper No. GT2022-84352.10.1115/GT2022-84352
You do not currently have access to this content.