Abstract

In recent years, the aviation industry has witnessed a transformative wave of innovation in electrified aircraft propulsion (EAP), driven by sustainability and efficiency goals. Integration of novel electrical subsystems, including high-voltage power electronics, motors/generators, and energy storage devices, has introduced intricate complexities. In this context, an intensified focus on prognostics and health management (PHM) is imperative, considering the heightened reliability needs in a transportation propulsion application. This paper extensively analyzes the current state of the art in PHM applicable to various EAP systems and components crucial for the functioning of electric aircraft. Typical fault modes and fault management strategies are analyzed at various levels of systems hierarchy. An integral aspect of our investigation involves the identification of critical gaps within existing PHM frameworks, guiding the research agenda for enhanced reliability and performance. Moreover, the distributed nature and increasing complexity of electric propulsion systems underscore the importance of model-based systems engineering (MBSE). We advocate for the exploration of MBSE not only to inform the design and implementation of PHM solutions but also to facilitate certification and Verification and Validation activities. Additionally, the paper offers insights into existing tools and simulation software packages capable of integrating traditional gas turbine modules with electric subsystems, as well as simulating various faulty conditions in EAP relevant to PHM development. Key gaps in these tools are emphasized, drawing attention to areas that require further refinement and development. This comprehensive exploration aims to pave the way for future advancements in PHM tailored for the unique challenges posed by electric aircraft propulsion systems.

References

1.
SAE
,
2022
, “
AIR8678 Architecture Examples for Electrified Propulsion Aircraft
,”
SAE
Paper No. 2022-08-01.10.4271/2022-08-01
2.
Simon
,
D. L.
,
2023
, “
Health Management Considerations for Electrified Aircraft Propulsion Systems
,”
2023 GE Electrification Symposium
,
Niskayuna, NY
, Oct. 11.https://ntrs.nasa.gov/api/citations/20220004260/downloads/EAP_HealthMangementConsideration_DSimon_v2.pdf
3.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present and Future Trends
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.10.1115/1.4026126
4.
Boost
,
M.
,
Hamblin
,
K.
,
Jackson
,
J.
,
Korenblit
,
Y.
,
Rajamani
,
S. R. T.
, and
Stewart
,
J.
,
2014
, “
Practical PHM for Medium to Large Aerospace Grade Li-Ion Battery Systems
,” European Conference of the Prognostics and Health Management Society
(PHME14)
, Nantes, France, July
8
10
.10.36001/phme.2014.v2i1.1536
5.
Sarlioglu
,
B.
, and
Morris
,
C. T.
,
2015
, “
More Electric Aircraft: Review, Challenges, and Opportunities for Commercial Transport Aircraft
,”
IEEE Trans. Transp. Electrif.
,
1
(
1
), pp.
54
64
.10.1109/TTE.2015.2426499
6.
Barzkar
,
A.
, and
Ghassemi
,
M.
,
2020
, “
Electric Power Systems in More and All Electric Aircraft: A Review
,”
IEEE Access
,
8
, pp.
169314
169332
.10.1109/ACCESS.2020.3024168
7.
ARPA-E
,
2023
, “
PROPEL-1K
,” U.S. Department of Energy, Advanced Research Projects Agency - Energy, Washington, DC, accessed Dec. 27, 2023, https://arpa-e.energy.gov/technologies/programs/propel-1k
8.
Li
,
J.
,
Ye
,
M.
,
Ma
,
X.
,
Wang
,
Q.
, and
Wang
,
Y.
,
2023
, “
SOC Estimation and Fault Diagnosis Framework of Battery Based on Multi-Model Fusion Modeling
,”
J. Energy Storage
,
65
, p.
107296
.10.1016/j.est.2023.107296
9.
Kulkarni
,
C.
,
Schumann
,
J.
, and
Roychoudhury
,
I.
,
2019
, “
On-Board Battery Monitoring and Prognostics for Electric-Propulsion Aircraft
,”
AIAA
Paper No. 2018-5034.10.2514/6.2018-5034
10.
Hashemi
,
S. R.
,
Esmaeeli
,
R.
,
Nazari
,
A.
,
Aliniagerdroudbari
,
H.
,
Alhadri
,
M.
,
Zakri
,
W.
,
Mohammed
,
A. H.
,
Mahajan
,
A.
, and
Farhad
,
S.
,
2019
, “
A Fast Diagnosis Methodology for Typical Faults of a Lithium-Ion Battery in Electric and Hybrid Electric Aircraft
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
1
), p.
8
.10.1115/1.4044956
11.
Goebel
,
K.
,
Saha
,
B.
,
Saxena
,
A.
,
Celaya
,
J. R.
, and
Christophersen
,
J. P.
,
2008
, “
Prognostics in Battery Health Management
,”
IEEE Instrum. Meas. Mag.
,
11
(
4
), pp.
33
40
.10.1109/MIM.2008.4579269
12.
Hu
,
X.
,
Zhang
,
K.
,
Liu
,
K.
,
Lin
,
X.
,
Dey
,
S.
, and
Onori
,
S.
,
2020
, “
Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures
,”
IEEE Ind. Electron. Mag.
,
14
(
3
), pp.
65
91
.10.1109/MIE.2020.2964814
13.
Bole
,
B.
,
Kulkarni
,
C.
, and
Daigle
,
M.
,
2014
, “
Adaptation of an Electrochemistry-Based Li-Ion Battery Model to Account for Deterioration Observed Under Randomized Use
,” Annual Conference of the Prognostics and Health Management Society (
PHM14
), Fort Worth, TX, Sept. 29–Oct. 2.10.36001/phmconf.2014.v6i1.2490
14.
Hogge
,
E. F.
,
Bole
,
B. M.
,
Vazquez
,
S. L.
, and
Celaya
,
J.
,
2015
, “
Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft
,” Annual Conference of the Prognostics and Health Management (
PHM15
), Coronado, CA, Oct.
18
24
.https://ntrs.nasa.gov/api/citations/20160006424/downloads/20160006424.pdf
15.
Cameron
,
Z.
,
Kulkarni
,
C.
,
Guarneros
,
A.
,
Goebe
,
K.
, and
Poll
,
S.
,
2015
, “
A Battery Certification Testbed for Small Satellite Missions
,”
IEEE Autotestcon 2015
,
National Harbor, MA
, Nov.
2
5
.10.1109/AUTEST.2015.7356483
16.
Fricke
,
K.
,
Nascimento
,
R.
,
Corbetta
,
M.
,
Kulkarni
,
C.
, and
Viana
,
F.
,
2023
, “
Prognosis of Li-Ion Batteries Under Large Load Variations Using Hybrid Physics-Informed Neural Networks
,” Annual Conference of the PHM Society (
PHM23
),
Salt Lake City, UT
, Oct. 28–Nov. 2.10.36001/phmconf.2023.v15i1.3463
17.
Kukoba
,
I. I.
,
Davidov
,
A. O.
,
Machulo
,
G. I.
, and
Lisodid
,
S. Y.
,
2021
, “
Review of Diagnostic Methods for Aircraft Electrochemical Batteries
,” XVIII Technical Scientific Conference on Aviation Dedicated to the Memory of N.E. Zhukovsky (
TSCZh
), Moscow, Russia, Oct.
29
30
.10.1109/TSCZh53346.2021.9628390
18.
Daigle
,
M. J.
, and
Kulkarni
,
C.
,
2013
, “
Electrochemistry-Based Battery Modeling for Prognostics
,” Annual Conference of the Prognostics and Health Management Society (
PHM13
),
New Orleans, LA
, Oct.
14
17
.10.36001/phmconf.2013.v5i1.2252
19.
Jarvis
,
K. J.
,
Kulkarni
,
C.
,
Okolo
,
W. A.
, and
Teubert
,
C.
,
2022
, “
Improving Computational Efficiency of Prognostics Algorithms in Resource-Constrained Settings
,”
IEEE Aerospace Conference
,
Big Sky, MT
, Mar.
5
12
.10.1109/AERO53065.2022.9843250
20.
Watkins
,
J.
,
Teubert
,
C.
, and
Ossenfort
,
J.
,
2019
, “
Prognostics As-A-Service: A Scalable Cloud Architecture for Prognostics
,” Annual Conference Prognostics and Health Management Society (
PHM19
),
Scottsdale, AZ
, Sept.
21
26
.https://ntrs.nasa.gov/api/citations/20190031754/downloads/20190031754.pdf
21.
Hu
,
K.
,
Liu
,
Z.
,
Yang
,
Y.
,
Iannuzzo
,
F.
, and
Blaabjerg
,
F.
,
2020
, “
Ensuring a Reliable Operation of Two-Level IGBT-Based Power Converters: A Review of Monitoring and Fault-Tolerant Approaches
,”
IEEE Access
,
8
, pp.
89988
90022
.10.1109/ACCESS.2020.2994368
22.
Susinni
,
G.
,
Rizzo
,
S. A.
, and
Iannuzzo
,
F.
,
2021
, “
Two Decades of Condition Monitoring Methods for Power Devices
,”
Electronics
,
10
(
6
), p.
683
.10.3390/electronics10060683
23.
Samavatian
,
V.
,
Fotuhi-Firuzabad
,
M.
,
Dehghanian
,
P.
, and
Blaabjerg
,
F.
,
2021
, “
Reliability Modeling of Multistate Degraded Power Electronic Converters With Simultaneous Exposure to Dependent Competing Failure Processes
,”
IEEE Access
,
9
, pp.
67096
67108
.10.1109/ACCESS.2021.3075974
24.
Gonzalez-Hernando
,
F.
,
San-Sebastian
,
J.
,
Garcia-Bediaga
,
A.
,
Arias
,
M.
,
Iannuzzo
,
F.
, and
Blaabjerg
,
F.
,
2019
, “
Wear-Out Condition Monitoring of IGBT and MOSFET Power Modules in Inverter Operation
,”
IEEE Trans. Ind. Appl.
,
55
(
6
), pp.
6184
6192
.10.1109/TIA.2019.2935985
25.
Kratz
,
J. L.
, and
Simon
,
D. L.
,
2022
, “
Failure Modes and Mitigation Strategies for a Turboelectric Aircraft Concept With Turbine Electrified Energy Management
,”
AIAA
Paper No. 2022-1191.10.2514/6.2022-1191
26.
Simon
,
D. L.
, and
Connolly
,
J. W.
,
2020
, “
Electrified Aircraft Propulsion Systems: Gas Turbine Control Considerations for the Mitigation of Potential Failure Modes and Hazards
,”
ASME
Paper No. GT2020-16335.10.1115/GT2020-16335
27.
Wang
,
H.
, and
Blaabjerg
,
F.
,
2021
, “
Power Electronics Reliability: State of the Art and Outlook
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
9
(
6
), pp.
6476
6493
.10.1109/JESTPE.2020.3037161
28.
Meneghini
,
M.
,
Rossetto
,
I.
,
Santi
,
C. D.
,
Rampazzo
,
F.
,
Tajalli
,
A.
,
Barbato
,
A.
,
Ruzzarin
,
M.
, et al.,
2017
, “
Reliability and Failure Analysis in Power GaN-HEMTs: An Overview
,” IEEE International Reliability Physics Symposium (
IRPS
),
Monterey, CA
, Apr.
2
6
.10.1109/IRPS.2017.7936282
29.
Hayes
,
J.
,
George
,
K.
,
Killeen
,
P.
,
McPherson
,
B.
,
Olejniczak
,
K. J.
, and
McNutt
,
T. R.
,
2016
, “
Bidirectional, SiC Module-Based Solid-State Circuit Breakers for 270 Vdc MEA/AEA Systems
,” IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (
WiPDA
),
Fayetteville, AR
, Nov.
7
9
.10.1109/WiPDA.2016.7799912
30.
Gonzalez
,
J. O.
,
Wu
,
R.
,
Agbo
,
S.
, and
Alatise
,
O.
,
2019
, “
Robustness and Reliability Review of Si and SiC FET Devices for More- Electric-Aircraft Applications
,”
Microelectroin. Reliab.
,
100–101
(
113324
), p.
113324
.10.1016/j.microrel.2019.06.016
31.
Ni
,
Z.
,
Lyu
,
X.
,
Yadav
,
O. P.
,
Singh
,
B. N.
,
Zheng
,
S.
, and
Cao
,
D.
,
2020
, “
Overview of Real-Time Lifetime Prediction and Extension for SiC Power Converters
,”
IEEE Trans. Power Electron.
,
35
(
8
), pp.
7765
7794
.10.1109/TPEL.2019.2962503
32.
Corcau
,
J. I.
, and
Dinca
,
L.
,
2020
, “
More Electricity on Modern Civil Aircrafts-Review
,” 24th International Conference on Circuits, Systems, Communications and Computers (
CSCC
), Chania, Greece, July
19
22
.10.1109/CSCC49995.2020.00048
33.
Bakhshi
,
A.
,
Bigdeli
,
M.
,
Moradlou
,
M.
, and
CheshmehBeigi
,
H. M.
,
2021
, “
More Electric Aircraft Fault Current Protection: A Review
,” 12th Power Electronics, Drive Systems, and Technologies Conference (
PEDSTC
), Tabriz, Iran, Feb.
2
4
.10.1109/PEDSTC52094.2021.9405947
34.
ARPA-E CABLES
,
2020
, “
Connecting Aviation By Lighter Electrical Systems (CABLES)
,”
U.S. Department of Energy
, Washington, DC, accessed Dec. 27, 2023, https://arpa-e.energy.gov/technologies/exploratory-topics/aviation-power-distribution
35.
Ni
,
K.
,
Liu
,
Y.
,
Mei
,
Z.
,
Wu
,
T.
,
Hu
,
Y.
,
Wen
,
H.
, and
Wang
,
Y.
,
2019
, “
Electrical and Electronic Technologies in More-Electric Aircraft: A Review
,”
IEEE Access
,
7
, pp.
76145
76166
.10.1109/ACCESS.2019.2921622
36.
Buticchi
,
G.
,
Bozhko
,
S.
,
Liserre
,
M.
,
Wheeler
,
P.
, and
Al-Haddad
,
K.
,
2019
, “
On-Board Microgrids for the More Electric Aircraft—Technology Review
,”
IEEE Trans. Ind. Electrion.
,
66
(
7
), pp.
5588
5599
.10.1109/TIE.2018.2881951
37.
Armstrong
,
M.
,
Coss
,
C.
,
Phillips
,
D.
, and
Blackwelder
,
M.
,
2013
, “
Stability, Transient Cesponse, Control, and Safety of a High-Power Electric Grid for Turboelectric Propulsion of Aircraft
,” NASA, Cleveland, OH, Report No.
NASA/CC—2013-217865
.https://ntrs.nasa.gov/api/citations/20140000336/downloads/20140000336.pdf
38.
Dorn-Gomba
,
L.
,
Ramoul
,
J.
,
Reimers
,
J.
, and
Emadi
,
A.
,
2020
, “
Power Electronic Converters in Electric Aircraft: Current Status, Challenges, and Emerging Technologies
,”
IEEE Trans. Transp. Electrif.
,
6
(
4
), pp.
1648
1664
.10.1109/TTE.2020.3006045
39.
Swaminathan
,
N.
, and
Cao
,
Y.
,
2020
, “
An Overview of High-Conversion High-Voltage DC–DC Converters for Electrified Aviation Power Distribution System
,”
IEEE Trans. Transp. Electrif.
,
6
(
4
), pp.
1740
1754
.10.1109/TTE.2020.3009152
40.
Rafin
,
S. M. S. H.
,
Haque
,
M. A.
,
Islam
,
R.
, and
Mohammed
,
O. A.
,
2023
, “
A Review of Power Electronic Converters for Electric Aircraft
,” IEEE Fourth International Symposium on 3D Power Electronics Integration and Manufacturing
(3D-PEIM)
, Miami, FL, Feb.
1
3
.10.1109/3D-PEIM55914.2023.10052535
41.
Huang
,
Z.
,
Yang
,
T.
,
Giangrande
,
P.
,
Galea
,
M.
, and
Wheeler
,
P.
,
2022
, “
Technical Review of Dual Inverter Topologies for More Electric Aircraft Applications
,”
IEEE Trans. Transp. Electrif.
,
8
(
2
), pp.
1966
1980
.10.1109/TTE.2021.3113606
42.
Abuelnaga
,
A.
,
Narimani
,
M.
, and
Bahman
,
A. S.
,
2021
, “
Power Electronic Converter Reliability and Prognosis Review Focusing on Power Switch Module Failures
,”
J. Power Electron.
,
21
(
6
), pp.
865
880
.10.1007/s43236-021-00228-6
43.
Zhao
,
S.
,
Chen
,
S.
,
Yang
,
F.
,
Ugur
,
E.
,
Akin
,
B.
, and
Wang
,
H.
,
2021
, “
A Composite Failure Precursor for Condition Monitoring and Remaining Useful Life Prediction of Discrete Power Devices
,”
IEEE Trans. Ind. Inf.
,
17
(
1
), pp.
688
698
.10.1109/TII.2020.2991454
44.
Zhao
,
S.
,
Blaabjerg
,
F.
, and
Wang
,
H.
,
2021
, “
An Overview of Artificial Intelligence Applications for Power Electronics
,”
EEE Trans. Power Electron.
,
36
(
4
), pp.
4633
4658
.10.1109/TPEL.2020.3024914
45.
Mirza
,
A. B.
,
Choksi
,
K.
,
Vala
,
S. S.
,
Radha
,
K. M.
,
Chinthavali
,
M. S.
, and
Luo
,
F.
,
2022
, “
Cognitive Insights Into Metaheuristic Digital Twin Based Health Monitoring of DC-DC Converters
,” 24th European Conference on Power Electronics and Applications (
EPE'22 ECCE Europe
), Hannover, Germany, Sept.
5
9
.https://ieeexplore.ieee.org/document/9907060
46.
Tsibizov
,
A.
,
Kovacevic-Badstubner
,
I.
,
Kakarla
,
B.
, and
Grossner
,
U.
,
2020
, “
Accurate Temperature Estimation of SiC Power MOSFETs Under Extreme Operating Conditions
,”
IEEE Trans. Power Electron.
,
35
(
2
), pp.
1855
1865
.10.1109/TPEL.2019.2917221
47.
Kulkarni
,
C. S.
,
Biswas
,
G.
,
Bharadwaj
,
R.
, and
Kim
,
K.
,
2010
, “
Effects of Degradation in DC-DC Converters on Avionics Systems: A Model Based Approach
,”
Machinery Failure Prevention Technology Conference, MFPT 2010
,
Huntsville, AL
, Apr.
13
15
.https://www.researchgate.net/publication/241195106_Effects_of_Degradation_in_DC DC_Converters_on_Avionics_Systems_A_Model_Based_Approach
48.
Chapman
,
J.
,
Lavelle
,
T.
,
May
,
C.
,
Litt
,
J.
, and
Guo
,
T.-H.
,
2014
, “
Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) User's Guide
,” NASA, Cleveland, OH, Report No.
NASA/TM-2014-216638
.https://ntrs.nasa.gov/citations/20140012486
49.
Chapman
,
J. W.
, and
Litt
,
J. S.
,
2018
, “
An Approach for Utilizing Power Flow Modeling for Simulations of Hybrid Electric Propulsion Systems
,”
AIAA
Paper No. 2018-5018.10.2514/6.2018-5018
50.
Coutinho
,
M.
,
Bento
,
D.
,
Souza
,
A.
,
Cruz
,
R.
,
Afonso
,
F.
,
Lau
,
F.
,
Suleman
,
A.
, et al.,
2023
, “
A Review on the Recent Developments in Thermal Management Systems for Hybrid-Electric Aircraft
,”
Appl. Therm. Eng.
,
227
, p.
120427
.10.1016/j.applthermaleng.2023.120427
51.
Perullo
,
C.
,
Alahmad
,
A.
,
Wen
,
J.
,
D'Arpino
,
M.
,
Canova
,
M.
, and
Mavris
,
D. N.
,
2019
, “
Sizing and Performance Analysis of a Turbo-Hybrid-Electric Regional Jet for the NASA ULI Program
,”
AIAA
Paper No. 2019-4490.10.2514/6.2019-4490
52.
Annapragada
,
S. R.
,
Macdonald
,
M.
,
Sur
,
A.
,
Mahmoudi
,
R.
, and
Lents
,
C.
,
2018
, “
Hybrid Electric Aircraft Battery Heat Acquisition System
,”
AIAA
Paper No. 2018-4992.
53.
Jang
,
D.
,
Yun
,
S.
,
Hong
,
S.
,
Cho
,
W.
, and
Kim
,
P. Y.
,
2022
, “
Performance Characteristics of a Novel Heat Pipe-Assisted Liquid Cooling System for the Thermal Management of Lithium-Ion Batteries
,”
Energy Convers. Manage
,
251
, p.
115001
.10.1016/j.enconman.2021.115001
54.
Zhang
,
F.
,
Zhai
,
L.
,
Zhang
,
L.
,
Yi
,
M.
,
Du
,
B.
, and
Li
,
S.
,
2022
, “
A Novel Hybrid Battery Thermal Management System With Fins Added on and Between Liquid Cooling Channels in Composite Phase Change Materials
,”
Appl. Therm. Eng.
,
207
, p.
118198
.10.1016/j.applthermaleng.2022.118198
55.
Schiltgen
,
B.
, and
Freeman
,
J.
,
2019
, “
ECO-150-300 Design and Performance: A Tube-And-wing Distributed Electric Propulsion Airliner
,”
AIAA
Paper No. 2019-1808.10.2514/6.2019-1808
56.
Chapman
,
J.
,
Hasseeb
,
H.
, and
Schnulo
,
S.
,
2020
, “
Thermal Management System Design for Electrified Aircraft Propulsion Concepts
,”
AIAA
Paper No. 2020-3571.10.2514/6.2020-3571
57.
Shi
,
M.
,
Sanders
,
M.
,
Alahmad
,
A.
,
Perullo
,
C.
,
Cinar
,
G.
, and
Mavris
,
D.
,
2020
, “
Design and Analysis of the Thermal Management System of a Hybrid Turboelectric Regional Jet for the NASA ULI Program
,”
AIAA
Paper No.
2020
-
3572
.10.2514/6.2020-3572
58.
Heerden
,
A. V.
,
Judt
,
D.
,
Jafari
,
S.
,
Lawson
,
C.
,
Nikolaidis
,
T.
, and
Bosak
,
D.
,
2022
, “
Aircraft Thermal Management: Practices, Technology, System Architectures, Future Challenges, and Opportunities
,”
Prog. Aerosp. Sci
,
128
, p.
100767
.10.1016/j.paerosci.2021.100767
59.
Yetik
,
O.
, and
Karakoc
,
T.
,
2021
, “
Thermal Management System With Nanofluids for Hybrid Electric Aircraft Battery
,”
Int. J. Energy Res.
,
45
(
6
), pp.
8919
8931
.10.1002/er.6425
60.
Dezhin
,
D.
,
Dezhina
,
I.
, and
Ilyasov
,
R.
,
2020
, “
Superconducting Propulsion System With LH2 Cooling for All-Electric Aircraft
,”
J. Phys. Conf. Ser.
,
1559
(
1
), p.
012143
.10.1088/1742-6596/1559/1/012143
61.
Sozer
,
E.
,
Maldonado
,
D.
,
Bhamidapati
,
K.
, and
Schnulo
,
S.
,
2020
, “
Computational Evaluation of an OML-Based Heat Exchanger Concept for HEATheR
,”
AIAA
Paper No.
2020
-
3575
.10.2514/6.2020-3575
62.
Nafis
,
B.
,
Whitt
,
R.
,
Iradukunda
,
A.-C.
, and
Huitink
,
D.
,
2021
, “
Additive Manufacturing for Enhancing Thermal Dissipation in Heat Sink Implementation: A Review
,”
Heat Transf. Eng.
,
42
(
12
), pp.
967
984
.10.1080/01457632.2020.1766246
63.
Johnson
,
D.
,
Niedbalski
,
N.
,
Ervin
,
J.
, and
Patnaik
,
S.
,
2017
, “
A Thermal Management System Using Ammonium Carbamate as an Endothermic Heat Sink
,”
Appl. Therm. Eng.
,
121
, pp.
897
907
.10.1016/j.applthermaleng.2017.04.126
64.
Golovanov
,
D.
,
Gerada
,
D.
,
Xu
,
Z.
,
Gerada
,
C.
,
Page
,
A.
, and
Sawata
,
T.
,
2019
, “
Designing an Advanced Electrical Motor for Propulsion of Electric Aircraft
,”
AIAA
Paper No. 2019-4482.10.2514/6.2019-4482
65.
Tom
,
L.
,
Khowja
,
M.
,
Vakil
,
G.
, and
Gerada
,
C.
,
2021
, “
Commercial Aircraft Electrification - Current State and Future Scope
,”
Energies
,
14
(
24
), p.
8381
.10.3390/en14248381
66.
Madonna
,
V.
,
Giangrande
,
P.
, and
Galea
,
M.
,
2018
, “
Electrical Power Generation in Aircraft: Review, Challenges, and Opportunities
,”
IEEE Trans. Transp. Electrif.
,
4
(
3
), pp.
646
659
.10.1109/TTE.2018.2834142
67.
Libich
,
J.
,
Máca
,
J.
,
Vondrák
,
J.
,
Čech
,
O.
, and
Sedlaříková
,
M.
,
2018
, “
Supercapacitors: Properties and Applications
,”
J. Energy Storage
,
17
, pp.
224
227
.10.1016/j.est.2018.03.012
68.
National Academies
,
2016
,
Commercial Aircraft Propulsion and Energy Systems Research: Reducing Global Carbon Emissions
,
National Academies Press
,
Washington, DC
.
69.
Abebe
,
R.
,
Vakil
,
G.
,
Calzo
,
G.
,
Cox
,
T.
,
Lambert
,
S.
,
Johnson
,
M.
,
Gerada
,
C.
, and
Mecrow
,
B.
,
2016
, “
Integrated Motor Drives: State of the Art and Future Trends
,”
IET Electr. Power Appl.
,
10
(
8
), pp.
757
771
.10.1049/iet-epa.2015.0506
70.
Davies
,
D.
,
Jenkins
,
S.
, and
Belben
,
F.
,
2013
, “
Survey of Fatigue Failures in Helicopter Components and Some Lessons Learnt
,”
Eng. Failure Anal.
,
32
, pp.
134
151
.10.1016/j.engfailanal.2013.03.005
71.
The Commercial Aviation Safety Team (CAST)
,
2011
, “
Propeller Operation and Malfunctions Basic Familiarization for Flight Crews
,”
SKYbrary Bookshelf
, Brussels, Belgium, accessed July 1, 2023, https://skybrary.aero/bookshelf/books/3703.pdf
72.
FAA, AIA
,
2017
, “
3rd Technical Report on Propulsion System and Auxiliary Power Unit (APU) Related Aircraft Safety Hazards
,”
Federal Aviation Administration and Aerospace Industries Association
, Washington, DC, accessed July 1, 2023, https://www.faa.gov/sites/faa.gov/files/aircraft/air_cert/design_approvals/engine_prop/engines_Upd_Caam_report.pdf
73.
Simon
,
D. L.
,
Thomas
,
R.
, and
Dunlap
,
K. M.
,
2022
, “
Considerations for the Extension of Gas Path Analysis to Electrified Aircraft Propulsion Systems
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031004
.10.1115/1.4052424
74.
Litt
,
J. S.
,
Kratz
,
J. L.
,
Santino
,
B.
,
Sachs-Wetstone
,
J.
,
Dever
,
T.
,
Buescher
,
H. E.
,
Ogden
,
N. C.
, and
Valdez
,
F.
,
2023
, “
Control Architecture for a Concept Aircraft With a Series/Parallel Partial Hybrid Powertrain and Distributed Electric Propulsion
,”
AIAA
Paper No. 2023-1750.10.2514/6.2023-1750
75.
Simon
,
D. L.
,
Bianco
,
S. J.
, and
Horning
,
M. A.
,
2023
, “
Integrated Control Design for a Partially Turboelectric Aircraft Propulsion System
,”
ASME J. Eng. Gas Turbines Power
, 146(7), p. 070903.10.1115/1.4063715
76.
Hill
,
E. D.
,
Amthor
,
A. E.
,
Soloway
,
D. I.
,
Simon
,
D. L.
, and
Connolly
,
J. W.
,
2023
, “
Model Predictive Control Strategies for Turbine Electrified Energy Management
,”
ASME J. Eng. Gas Turbines Power
, epub.10.1115/1.4063783
77.
Jones
,
S.
,
Haller
,
W.
, and
Tong
,
M.
,
2017
, “
An N+3 Technology Level Reference Propulsion System
,” NASA, Cleveland, OH, Report No.
NASA/TM-2017-219501
.https://ntrs.nasa.gov/citations/20170005426
78.
Simon
,
D. L.
,
Bianco
,
S. J.
,
Horning
,
M.
,
Saus
,
J.
,
Amthor
,
A.
, and
Sachs-Wetstone
,
J.
,
2023
, “
Real-Time Hardware-in-the-Loop Evaluation of a Partially Turboelectric Propulsion Control Design
,”
AIAA
Paper No. 2023-4235.10.2514/6.2023-4235
79.
Li
,
R.
,
Verhagen
,
W. J.
, and
Curran
,
R.
,
2020
, “
A Systematic Methodology for Prognostics and Health Management System Architecture Definition
,”
Reliab. Eng. Syst. Saf.
,
193
, p.
106598
.10.1016/j.ress.2019.106598
80.
Dumargue
,
T.
,
Pougeon
,
J.-R.
, and
Masse
,
J.-R.
,
2016
, “
An Approach to Designing PHM Systems With Systems Engineering
,” European Conference of the Prognostics and Health Management Society (
PHME16
), Bilbao, Spain, July
5
8
.https://papers.phmsociety.org/index.php/phme/article/download/1661/623
81.
Frodyma
,
P.
, and
Waldmann
,
B.
,
2010
, “
ARINC 429 Specification Tutorial
,” AIM GmbH, 2.1 Edition.
82.
Farkas
,
J.
,
Bello
,
L. L.
, and
Gunther
,
C.
,
2018
, “
Time-Sensitive Networking Standards
,”
IEEE Commun. Stand. Mag.
,
2
(
2
), pp.
20
21
.10.1109/MCOMSTD.2018.8412457
83.
Aronautical Radio INC
,
2005
, “
ARINC 664, P7: Avionics Full Duplex Switched Ethernet (AFDX) Network
,” Aronautical Radio INC, Warrendale, PA, accessed July 1, 2023, https://aviation-ia.sae-itc.com/standards/arinc664p7-1-664p7-1-aircraft-data-network-part-7-avionics-full-duplex-switched-ethernet-network
84.
IEEE
,
2023
, “
P802.1DP – TSN for Aerospace Onboard Ethernet Communications
,”
IEEE
, New York, accessed Dec. 29, 2023, https://1.ieee802.org/tsn/802-1dp/
85.
Abdallah
,
A. A.
, and
Fan
,
I.-S.
,
2022
, “
Towards Building Ontology-Based Applications for Integrating Heterogeneous Aircraft Maintenance Records
,” IEEE 20th International Conference on Industrial Informatics (
INDIN
),
Perth, Australia
, July
25
28
.10.1109/INDIN51773.2022.9976080
86.
Chen
,
J.
,
Chen
,
Y.
,
Hu
,
Z.
,
Lu
,
J.
,
Zheng
,
X.
,
Zhang
,
H.
, and
Kiritsis
,
D.
,
2022
, “
A Semantic Ontology-Based Approach to Support Model-Based Systems Engineering Design for an Aircraft Prognostic Health Management System
,”
Front. Manuf. Technol.
,
2
, p.
886518
.10.3389/fmtec.2022.886518
87.
Saswata
,
P.
,
Prince
,
D.
,
Iyer
,
N.
,
Durling
,
M.
,
Visnevski
,
N.
, and
Meng
,
B.
,
2023
, “
Assurance of Machine Learning-Based Aerospace Systems: Towards an Overarching Properties-Driven Approach
,”
United States Department of Transportation, Federal Aviation Administration
, Springfield, VA, Report No.
DOT/FAA/TC-23/54
.https://rosap.ntl.bts.gov/view/dot/68923
88.
Datta
,
S.
,
Roy
,
R.
,
Bendarkar
,
M. V.
,
Harrison
,
E. D.
, and
Mavris
,
D. N.
,
2022
, “
MBSE-Enabled Risk Reduction for Certification of Novel Aircraft Configurations
,”
AIAA
Paper No. 2022-1189.10.2514/6.2022-1189
89.
Gundy-Burlet
,
K.
,
2022
, “
MBSE Validation and Verification
,”
Handbook of Model-Based Systems Engineering
,
Springer
,
Cham
.
You do not currently have access to this content.