Abstract

In light of the global commitment to decarbonize industrial processes, carbon capture and storage (CCS) plays a pivotal role in mitigating greenhouse gas emissions from gas turbine (GT) power generation processes. Achieving an efficient GT–CCS coupling requires the employment of high percentages of exhaust gas recirculation (EGR) to maximize the CO2 content at the CCS inlet. Nevertheless, such operating conditions pose critical challenges for conventional combustion systems due to reduced oxygen levels associated with higher EGR, limiting engine operability. To address this challenge, the development of innovative technical solutions is essential to extend the combustor operational capabilities at high EGR rates. For this goal, a significant number of computational fluid dynamics (CFD) simulations are required to identify the flame stability limits across various EGR levels and burner designs. It is imperative, in this context, to minimize computational costs while maintaining high accuracy. In this work, a comprehensive comparative study of an extended version of the flamelet generated manifolds (FGM) and the artificially thickened flame (ATF) model is performed through a large eddy simulation (LES)-based CFD analysis. The investigation is performed within the context of an industrial lean-premixed burner manufactured by Baker Hughes, operating with natural gas and CO2-diluted air at atmospheric pressure. While the extended-FGM has been previously presented by the authors in a study on the same test rig under standard air conditions, the current work aims to extend its application to critical oxygen-depleted conditions, where near-blowout phenomena such as flame liftoff and length elongation may become significantly pronounced. Numerical validation is carried out through a direct comparison of the computed averaged heat release, representing the flame topology, with detailed OH* chemiluminescence images from a test campaign conducted by the technology for high temperature (THT) Lab of the University of Florence. The experimental data will serve as the primary benchmark for assessing the models’ effectiveness in capturing the main dynamics of such critical operating conditions. Furthermore, potential disparities in both thermal and flow fields at the burner exit region between the two models will be discussed.

References

1.
Pape-Salmon
,
A.
,
Dogterom
,
J.
,
Wieler
,
C.
, and
Anielski
,
M.
,
2003
,
Low-Impact Renewable Energy Policy in Canada: Strengths, Gaps and a Path Forward
, JSTOR,
Pembina Institute
, Calgary, AB, Canada, pp.
51
65
.http://www.jstor.org/stable/resrep00232.9
2.
Tsiropoulos
,
I.
,
Nijs
,
W.
,
Tarvydas
,
D.
, and
Castello
,
P. R.
,
2020
, “
Towards Net-Zero Emissions in the EU Energy System by 2050 - Insights From Scenarios in Line With the 2030 and 2050 Ambitions of the European Green
,”
EN Publications Office of the European Union
, Luxembourg, Report No. EUR 29981.
3.
Stefanizzi
,
M.
,
Capurso
,
T.
,
Filomeno
,
G.
,
Marco
,
T.
, and
Pascazio
,
G.
,
2021
, “
Recent Combustion Strategies in Gas Turbines for Propulsion and Power Generation Toward a Zero-Emissions Future: Fuels, Burners, and Combustion Techniques
,”
Energies
,
14
(
20
), p.
6694
.10.3390/en14206694
4.
Öberg
,
S.
,
Odenberger
,
M.
, and
Johnsson
,
F.
,
2022
, “
Exploring the Competitiveness of Hydrogen-Fueled Gas Turbines in Future Energy Systems
,”
Int. J. Hydrogen Energy
,
47
(
1
), pp.
624
644
.10.1016/j.ijhydene.2021.10.035
5.
Boot-Handford
,
M. E.
,
Abanades
,
J. C.
,
Anthony
,
E. J.
,
Blunt
,
M. J.
,
Brandani
,
S.
,
Mac Dowell
,
N.
,
Fernández
,
J. R.
, et al.,
2014
, “
Carbon Capture and Storage Update
,”
Energy Environ. Sci.
,
7
(
1
), pp.
130
189
.10.1039/C3EE42350F
6.
Røkke
,
P. E.
, and
Hustad
,
J. E.
,
2005
, “
Exhaust Gas Recirculation in Gas Turbines for Reduction of co2 Emissions; Combustion Testing With Focus on Stability and Emissions
,”
Int. J. Thermodyn.
,
8
, pp.
167
173
.https://api.semanticscholar.org/CorpusID:86859291
7.
Herraiz
,
L.
,
Diego
,
M.
,
Bellas
,
J.-M.
,
Finney
,
K.
,
Pourkashanian
,
M.
,
Runyon
,
J.
,
Giles
,
A.
,
Marsh
,
R.
, and
Lucquiaud
,
M.
,
2021
, “
Selective Exhaust Gas Recycling in Gas Turbines With CO2 Capture: A Comprehensive Technology Assessment
,”
SSRN Electron. J.
,
1
, p.
16
.10.2139/ssrn.3811445
8.
Tanaka
,
Y.
,
Nose
,
M.
,
Nakao
,
M. T.
,
Saitoh
,
K.
, and
Ito
,
E.
,
2013
, “
Development of Low Nox Combustion System With EGR for 1700 °C-Class Gas Turbine
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
50
, pp.
1
6
.https://api.semanticscholar.org/CorpusID:55369324
9.
Burnes
,
D.
,
Saxena
,
P.
, and
Dunn
,
P.
,
2020
, “
Study of Using Exhaust Gas Recirculation on a Gas Turbine for Carbon Capture
,”
ASME
Paper No. GT2020-16080.10.1115/GT2020-16080
10.
Li
,
H.
,
Elkady
,
A. M.
, and
Evulet
,
A. T.
,
2009
, “
Effect of Exhaust Gas Recirculation on Nox Formation in Premixed Combustion System
,”
AIAA
Paper No. 2009-226.10.2514/6.2009-226
11.
Xie
,
M.
,
Fu
,
J.
,
Zhang
,
Y.
,
Shu
,
J.
,
Ma
,
Y.
,
Liu
,
J.
, and
Zeng
,
D.
,
2020
, “
Numerical Analysis on the Effects of CO2 Dilution on the Laminar Burning Velocity of Premixed Methane/Air Flame With Elevated Initial Temperature and Pressure
,”
Fuel
,
264
, p.
116858
.10.1016/j.fuel.2019.116858
12.
De Persis
,
S.
,
Cabot
,
G.
,
Pillier
,
L.
,
Gökalp
,
I.
, and
Boukhalfa
,
A. M.
,
2013
, “
Study of Lean Premixed Methane Combustion With CO2 Dilution Under Gas Turbine Conditions
,”
Energy Fuels
,
27
(
2
), pp.
1093
1103
.10.1021/ef3016365
13.
Aniello
,
A.
,
Laera
,
D.
,
Marragou
,
S.
,
Magnes
,
H.
,
Selle
,
L.
,
Schuller
,
T.
, and
Poinsot
,
T.
,
2023
, “
Experimental and Numerical Investigation of Two Flame Stabilization Regimes Observed in a Dual Swirl h2-Air Coaxial Injector
,”
Combust. Flame
,
249
, p.
112595
.10.1016/j.combustflame.2022.112595
14.
Castellani
,
S.
,
Meloni
,
R.
,
Orsino
,
S.
,
Ansari
,
N.
,
Yadav
,
R.
,
Bessette
,
D.
,
Boxx
,
I.
, and
Andreini
,
A.
,
2023
, “
High-Fidelity H2-CH4 Jet in Crossflow Modelling With a Flame Index-Controlled Artificially Thickened Flame Model
,”
Int. J. Hydrogen Energy
,
48
(
90
), pp.
35291
35304
.10.1016/j.ijhydene.2023.05.210
15.
Kazmouz
,
S.
,
Haworth
,
D.
,
Lillo
,
P.
, and
Sick
,
V.
,
2022
, “
Extension of a Thickened Flame Model to Highly Stratified Combustion - Application to a Spark-Ignition Engine
,”
Combust. Flame
,
236
(
2
), p.
111798
.10.1016/j.combustflame.2021.111798
16.
Nassini
,
P. C.
,
Pampaloni
,
D.
,
Meloni
,
R.
, and
Andreini
,
A.
,
2021
, “
Lean Blow-Out Prediction in an Industrial Gas Turbine Combustor Through a LES-Based CFD Analysis
,”
Combust. Flame
,
229
(
7
), p.
111391
.10.1016/j.combustflame.2021.02.037
17.
Amerighi
,
M.
,
Nassini
,
P.
,
Andreini
,
A.
,
Orsino
,
S.
,
Verma
,
I.
,
Yadav
,
R.
, and
Patil
,
S.
,
2023
, “
Assessment of Flamelet Generated Manifold Approach With Inclusion of Stretch Effects of Pure Hydrogen Flames
,”
ASME
Paper No. GT2023-102651.10.1115/GT2023-102651
18.
Lemmi
,
G.
,
Castellani
,
S.
,
Nassini
,
P.
,
Picchi
,
A.
,
Galeotti
,
S.
,
Becchi
,
R.
,
Andreini
,
A.
,
Babazzi
,
G.
, and
Meloni
,
R.
,
2024
, “
FGM versus ATF: A Comparative LES Analysis in Predicting the Flame Characteristics of an Industrial Lean Premixed Burner for Gas Turbine Applications
,”
Fuel Commun.
,
19
, p.
100117
.10.1016/j.jfueco.2024.100117
19.
Romano
,
S.
,
Meloni
,
R.
,
Riccio
,
G.
,
Nassini
,
P. C.
, and
Andreini
,
A.
,
2021
, “
Modeling of Natural Gas Composition Effect on Low Nox Burners Operation in Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031018
.10.1115/1.4049819
20.
Babazzi
,
G.
,
Galeotti
,
S.
,
Picchi
,
A.
,
Becchi
,
R.
,
Cerutti
,
M.
, and
Andreini
,
A.
,
2024
, “
Combustion Diagnostics and Emissions Measurements of a Novel Low NOx Burner for Industrial Gas Turbine Operated With CO2 Diluted Methane/Air Mixtures
,”
ASME J. Eng. Gas Turbines Power
, 146(7), p.
071007
.10.1115/1.4064266
21.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.10.1063/1.858280
22.
Ducros
,
F.
,
Franck
,
N.
, and
Poinsot
,
T.
,
1998
, “
Wall-Adapting Local Eddy-Viscosity Models for Simulations in Complex Geometries
,”
Numer. Methods Fluid Dyn. VI
,
6
, p.
1
.https://api.semanticscholar.org/CorpusID:115542454
23.
Ben-Nasr
,
O.
,
Hadjadj
,
A.
,
Chaudhuri
,
A.
, and
Shadloo
,
M.
,
2017
, “
Assessment of Subgrid-Scale Modeling for Large-Eddy Simulation of a Spatially-Evolving Compressible Turbulent Boundary Layer
,”
Comput. Fluids
,
151
, pp.
144
158
.10.1016/j.compfluid.2016.07.004
24.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
25.
Issa
,
R.
,
Gosman
,
A.
, and
Watkins
,
A.
,
1986
, “
The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme
,”
J. Comput. Phys.
,
62
(
1
), pp.
66
82
.10.1016/0021-9991(86)90100-2
26.
Franzelli
,
B.
,
2011
, “
Impact of the Chemical Description on Direct Numerical Simulation and Large Eddy Simulation of Turbulent Combustion in Industrial Aero-Engines
,”
Ph.D. thesis
,
Institut National Polytechnique de Toulouse – INPT
, Toulouse, France.https://www.researchgate.net/publication/277245675_Impact_of_the_chemical_description_on_Direct_Numerical_Simulation_and_Large_Eddy_Simulation_of_turbulent_combustion_in_industrial_aero-engines
27.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.10.1063/1.870436
28.
Legier
,
J.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Proceedings of the Summer Program
, Stanford, CA, Vol.
1
, pp.
157
168
.https://web.stanford.edu/group/ctr/ctrsp00/poinsot.pdf
29.
Yamashita
,
H.
,
Kushida
,
G.
, and
Takeno
,
T.
,
1990
, “
A Numerical Study of the Transition of Jet Diffusion Flames
,”
Proc.: Math. Phys. Sci.
,
431
(
1882
), pp.
301
314
.10.1098/rspa.1990.0132
30.
Rosenberg
,
D. A.
,
Allison
,
P. M.
, and
Driscoll
,
J. F.
,
2015
, “
Flame Index and Its Statistical Properties Measured to Understand Partially Premixed Turbulent Combustion
,”
Combust. Flame
,
162
(
7
), pp.
2808
2822
.10.1016/j.combustflame.2015.04.007
31.
University of California at San Diego
,
2016
, “
Chemical-Kinetic Mechanisms for Combustion Applications, San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research)
,”
University of California at San Diego
,
San Diego
, CA, accessed Sept. 17, 2024, https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
32.
Peters
,
N.
,
1988
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1231
1250
.10.1016/S0082-0784(88)80355-2
33.
Hadadpour
,
A.
,
Xu
,
S.
,
Zhang
,
Y.
,
Bai
,
X.-S.
, and
Jangi
,
M.
,
2023
, “
An Extended FGM Model With Transported PDF for LES of Spray Combustion
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4889
4898
.10.1016/j.proci.2022.09.014
34.
Frenklach
,
M.
,
Wang
,
H.
,
Goldenberg
,
M.
,
Smith
,
G.
,
Golden
,
D.
,
Bowman
,
C.
,
Hanson
,
R.
,
Gardiner
,
W.
, and
Lissianski
,
V.
,
1995
, “
Gri-Mech: An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion
,”
Gas Research Institute Chicago
, Chicago, IL, accessed Sept. 17, 2024, http://combustion.berkeley.edu/gri-mech/
35.
van Oijen
,
J.
, and
Goey
,
P.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
36.
Tay-Wo-Chong
,
L.
,
Scarpato
,
A.
, and
Polifke
,
W.
,
2017
, “
LES Combustion Model With Stretch and Heat Loss Effects for Prediction of Premix Flame Characteristics and Dynamics
,”
ASME
Paper No. GT2017-63357.10.1115/GT2017-63357
You do not currently have access to this content.