Abstract

The power generation sector has been recently moving toward decarbonization, and there is an increased interest in replacing conventional fossil fuels with fuels that produce reduced/zero carbon emissions. One such fuel is ammonia (NH3). However, ammonia is hard to ignite, has a low flame speed, and produces a significantly large amount of nitrogen oxide (NOx) emissions. Hence, using 100% ammonia as fuel in gas turbines requires significant modifications and the development of novel combustors. Blending hydrogen with ammonia, however, helps in having better control over the combustion properties. For example, a 70%/30% mixture of NH3/H2 mixture has a flame speed comparable to natural gas. Before utilizing hydrogen-blended ammonia in an actual gas turbine combustor, thorough simulation studies are required to evaluate its performance, possible hazards, and emissions. The literature lacks well-validated chemical kinetic models for the combustion of hydrogen-blended ammonia for undiluted mixtures at gas turbine-relevant conditions (∼20 bar). Most models available in the literature have been developed for ammonia extremely diluted in diluents such as argon or nitrogen. Hence, in this work, we develop a detailed chemical kinetic model for hydrogen-blended ammonia combustion and validate it with a wide range of experimental data for both dilute and undiluted mixtures relevant to gas turbine operating conditions. We outline the strengths and weaknesses of the current mechanism to aid future users of our chemical kinetic mechanism. The detailed chemical kinetic mechanism was reduced to a smaller version (32 species mechanism) without significant loss in accuracy using the directed relation graph with error propagation (DRGEP) and full species sensitivity analysis. The resultant mechanism can predict a wide range of experimental results with the least cumulative error and will be a valuable tool in computational fluid dynamics (CFD) simulations that will enable the development of gas turbines for zero-carbon power generation.

References

1.
Liu
,
Z.
,
Deng
,
Z.
,
Davis
,
S.
, and
Ciais
,
P.
,
2023
, “
Monitoring Global Carbon Emissions in 2022
,”
Nat. Rev. Earth Environ.
,
4
(
4
), pp.
205
206
.10.1038/s43017-023-00406-z
2.
Götz
,
M.
,
Lefebvre
,
J.
,
Mörs
,
F.
,
McDaniel Koch
,
A.
,
Graf
,
F.
,
Bajohr
,
S.
,
Reimert
,
R.
, and
Kolb
,
T.
,
2016
, “
Renewable Power-to-Gas: A Technological and Economic Review
,”
Renewable Energy
,
85
, pp.
1371
1390
.10.1016/j.renene.2015.07.066
3.
Wang
,
L.
,
Quadir
,
M. Z.
, and
Aguey-Zinsou
,
K.-F.
,
2016
, “
Direct and Reversible Hydrogen Storage of Lithium Hydride (LiH) Nanoconfined in High Surface Area Graphite
,”
Int. J. Hydrogen Energy
,
41
(
40
), pp.
18088
18094
.10.1016/j.ijhydene.2016.07.073
4.
Preuster
,
P.
,
Papp
,
C.
, and
Wasserscheid
,
P.
,
2017
, “
Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-Free Hydrogen Economy
,”
Acc. Chem. Res.
,
50
(
1
), pp.
74
85
.10.1021/acs.accounts.6b00474
5.
Metkemeijer
,
R.
, and
Achard
,
P.
,
1994
, “
Ammonia as a Feedstock for a Hydrogen Fuel Cell; Reformer and Fuel Cell Behaviour
,”
J. Power Sources
,
49
(
1–3
), pp.
271
282
.10.1016/0378-7753(93)01822-Y
6.
Jensen
,
J. O.
,
Vestbø
,
A. P.
,
Li
,
Q.
, and
Bjerrum
,
N. J.
,
2007
, “
The Energy Efficiency of Onboard Hydrogen Storage
,”
J. Alloys Compd.
,
446–447
, pp.
723
728
.10.1016/j.jallcom.2007.04.051
7.
Kojima
,
Y.
, and
Yamaguchi
,
M.
,
2022
, “
Ammonia as a Hydrogen Energy Carrier
,”
Int. J. Hydrogen Energy
,
47
(
54
), pp.
22832
22839
.10.1016/j.ijhydene.2022.05.096
8.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2008
, “
Using Ammonia as a Sustainable Fuel
,”
J. Power Sources
,
185
(
1
), pp.
459
465
.10.1016/j.jpowsour.2008.02.097
9.
Kojima
,
Y.
,
2024
, “
Safety of Ammonia as a Hydrogen Energy Carrier
,”
Int. J. Hydrogen Energy
,
50
, pp.
732
739
.10.1016/j.ijhydene.2023.06.213
10.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.10.1016/j.fuel.2015.06.070
11.
Egolfopoulos
,
F. N.
,
Cho
,
P.
, and
Law
,
C. K.
,
1989
, “
Laminar Flame Speeds of Methane-Air Mixtures Under Reduced and Elevated Pressures
,”
Combust. Flame
,
76
(
3–4
), pp.
375
391
.10.1016/0010-2180(89)90119-3
12.
Pratt
,
D. T.
,
1967
, “
Performance of Ammonia-Fired Gas-Turbine Combustors
,” University of California, Berkeley, Department of Mechanical Engineering, Thermal Systems Division, Berkeley, CA, Report No. 9,
DA-04-200-AMC-791 (x)
.https://apps.dtic.mil/sti/citations/AD0657585
13.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Zhu
,
X.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2020
, “
Stability Limits and NO Emissions of Technically-Premixed Ammonia-Hydrogen-Nitrogen-Air Swirl Flames
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
22008
22018
.10.1016/j.ijhydene.2020.05.236
14.
Okafor
,
E. C.
,
Yamashita
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. K. A.
,
Kudo
,
T.
,
Tsujimura
,
T.
,
Uchida
,
M.
,
Ito
,
S.
, and
Kobayashi
,
H.
,
2021
, “
Flame Stability and Emissions Characteristics of Liquid Ammonia Spray Co-Fired With Methane in a Single Stage Swirl Combustor
,”
Fuel
,
287
, p.
119433
.10.1016/j.fuel.2020.119433
15.
Hong
,
M.
,
Zhang
,
Y.
,
Braun
,
R. C.
, and
Bremer
,
D. J.
,
2023
, “
Simulations of Nitrous Oxide Emissions and Global Warming Potential in a C4 Turfgrass System Using Process-Based Models
,”
Eur. J. Agron.
,
142
, p.
126668
.10.1016/j.eja.2022.126668
16.
Ito
,
S.
,
Uchida
,
M.
,
Suda
,
T.
, and
Fujimori
,
T.
,
2020
, “
Development of Ammonia Gas Turbine Co-Generation Technology
,”
IHI Eng. Rev.
,
53
(
1
), p.
6
.https://www.ihi.co.jp/en/technology/sdgs/topic01/pdf/Vol53No1_H.pdf
17.
Acumen,
2024
, “
IHI: Developing the Ammonia Value Chain for Carbon Neutrality
,” Reuters, Hoboken, NJ, accessed Jan. 10, 2024, https://www.reuters.com/plus/acumen-stories/cop-28/ihi
18.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D.
,
Kunkuma
,
A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
19.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W. I. F.
, and
Bowen
,
P. J.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
20.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
(
4
), pp.
287
338
.10.1016/0360-1285(89)90017-8
21.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
67
, pp.
31
68
.10.1016/j.pecs.2018.01.002
22.
Glarborg
,
P.
,
2023
, “
The NH3/NO2/O2 System: Constraining Key Steps in Ammonia Ignition and N2O Formation
,”
Combust. Flame
,
257
, p.
112311
.10.1016/j.combustflame.2022.112311
23.
Stagni
,
A.
,
Cavallotti
,
C.
,
Arunthanayothin
,
S.
,
Song
,
Y.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
, and
Faravelli
,
T.
,
2020
, “
An Experimental, Theoretical and Kinetic-Modeling Study of the Gas-Phase Oxidation of Ammonia
,”
React. Chem. Eng.
,
5
(
4
), pp.
696
711
.10.1039/C9RE00429G
24.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.10.1016/j.combustflame.2014.08.022
25.
Shrestha
,
K. P.
,
Lhuillier
,
C.
,
Barbosa
,
A. A.
,
Brequigny
,
P.
,
Contino
,
F.
,
Mounaïm-Rousselle
,
C.
,
Seidel
,
L.
, and
Mauss
,
F.
,
2021
, “
An Experimental and Modeling Study of Ammonia With Enriched Oxygen Content and Ammonia/Hydrogen Laminar Flame Speed at Elevated Pressure and Temperature
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2163
2174
.10.1016/j.proci.2020.06.197
26.
Shrestha
,
K. P.
,
Seidel
,
L.
,
Zeuch
,
T.
, and
Mauss
,
F.
,
2018
, “
Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides
,”
Energy Fuels
,
32
(
10
), pp.
10202
10217
.10.1021/acs.energyfuels.8b01056
27.
Mei
,
B.
,
Zhang
,
J.
,
Shi
,
X.
,
Xi
,
Z.
, and
Li
,
Y.
,
2021
, “
Enhancement of Ammonia Combustion With Partial Fuel Cracking Strategy: Laminar Flame Propagation and Kinetic Modeling Investigation of NH3/H2/N2/Air Mixtures Up to 10 atm
,”
Combust. Flame
,
231
, p.
111472
.10.1016/j.combustflame.2021.111472
28.
Zhu
,
Y.
,
Curran
,
H. J.
,
Girhe
,
S.
,
Murakami
,
Y.
,
Pitsch
,
H.
,
Senecal
,
K.
,
Yang
,
L.
, and
Zhou
,
C.-W.
,
2024
, “
The Combustion Chemistry of Ammonia and Ammonia/Hydrogen Mixtures: A Comprehensive Chemical Kinetic Modeling Study
,”
Combust. Flame
,
260
, p.
113239
.10.1016/j.combustflame.2023.113239
29.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Meeks
,
E.
, and
Miller
,
J. A.
,
1996
, “
CHEMKIN-III: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-Phase Chemical and Plasma Kinetics
,” Sandia National Laboratories (SNL-CA), Livermore, CA, Report No.
SAND-96-8216
.10.2172/481621
30.
Reaction Design, 2011, “Chemkin-Pro,” Reaction Design, San Diego, CA.
31.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.10.1016/j.proci.2004.08.145
32.
Niemeyer
,
K. E.
, and
Sung
,
C.-J.
,
2011
, “
On the Importance of Graph Search Algorithms for DRGEP-Based Mechanism Reduction Methods
,”
Combust. Flame
,
158
(
8
), pp.
1439
1443
.10.1016/j.combustflame.2010.12.010
33.
Szanthoffer
,
A. G.
,
Zsély
,
I. G.
,
Kawka
,
L.
,
Papp
,
M.
, and
Turányi
,
T.
,
2023
, “
Testing of NH3/H2 and NH3/Syngas Combustion Mechanisms Using a Large Amount of Experimental Data
,”
Appl. Energy Combust. Sci.
,
14
, p.
100127
.10.1016/j.jaecs.2023.100127
34.
Pierro
,
M.
,
Dennis
,
C. W.
,
Pothen
,
A.
,
Hulliger
,
N.
,
Kelly
,
T.
,
Fraze
,
M.
, and
Urso
,
J. J.
, et al.,
2024
, “
Ammonia and Ammonia/Hydrogen Mixtures Ignition Delay Times and Chemical Kinetic Model Validation at Gas Turbine Relevant Conditions
,”
ASME
Paper No. GT2024-129083.
35.
Yovino
,
L.
,
Kim
,
G.
,
Rahman
,
R. K.
, and
Vasu
,
S. S.
,
2023
, “
Laminar Burning Speed Measurements of Hydrogen/Natural Gas Mixtures
,”
ASME
Paper No. GT2023-102892.10.1115/GT2023-102892
36.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C.-J.
, and
Herzler
,
J.
, et al.,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(
6
), pp.
995
1011
.10.1016/j.combustflame.2013.01.001
37.
Shen
,
X.
,
Wang
,
W.
,
Xu
,
J.
,
Liu
,
H.
, and
Wen
,
J. X.
,
2024
, “
Reevaluation of the Reaction Rates of H+O2
,”
Int. J. Hydrogen Energy
,
50
, pp.
1100
1109
.10.1016/j.ijhydene.2023.11.002
38.
Nguyen
,
T. L.
, and
Stanton
,
J. F.
,
2019
, “
Ab Initio Thermal Rate Coefficients for H + NH3 ⇌ H2 + NH2
,”
Int. J. Chem. Kinet.
,
51
(
5
), pp.
321
328
.10.1002/kin.21255
39.
Klippenstein
,
S. J.
,
Harding
,
L. B.
,
Ruscic
,
B.
,
Sivaramakrishnan
,
R.
,
Srinivasan
,
N. K.
,
Su
,
M. C.
, and
Michael
,
J. V.
,
2009
, “
Thermal Decomposition of NH2OH and Subsequent Reactions: Ab Initio Transition State Theory and Reflected Shock Tube Experiments
,”
J. Phys. Chem. A
,
113
(
38
), pp.
10241
10259
.10.1021/jp905454k
40.
Altinay
,
G.
, and
Macdonald
,
R. G.
,
2015
, “
Determination of the Rate Constants for the NH2(X2B1) + NH2(X2B1) and NH2(X2B1) + H Recombination Reactions in N2 as a Function of Temperature and Pressure
,”
J. Phys. Chem. A
,
119
(
28
), pp.
7593
7610
.10.1021/acs.jpca.5b00917
41.
Alturaifi
,
S. A.
,
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2022
, “
An Experimental and Modeling Study of Ammonia Pyrolysis
,”
Combust. Flame
,
235
, p.
111694
.10.1016/j.combustflame.2021.111694
You do not currently have access to this content.