Abstract

On the way to defossilization, green hydrogen is a promising way to substitute natural gas (NG) and oil in the gas turbine industry. In the scope of the H2mGT project, a microgas turbine (mGT) burner with 100% hydrogen firing is developed and validated. The project is funded by the German BMWK, and it is a collaboration between Technische Universität Berlin (TUB) and the manufacturer Euro-K GmbH. It consists of three phases: (1) atmospheric pressure tests with a fused silica combustion chamber; (2) atmospheric pressure tests with counterflow-cooled steel flame tube and secondary air injection; (3) validation of the burner in the mGT at elevated pressure levels. The current study will present the results of phase 2. The hydrogen burner used in the project is based on a swirl-stabilized burner of TUB and was scaled to 36 kW thermal power at atmospheric conditions. The burner design features a variable swirl intensity, additional axial momentum of air in the mixing tube, a movable central fuel lance, and pilot nozzles at the front plate. Furthermore, the steel flame tube is exchangeable, which allows the evaluation of different dilution hole patterns and, thus, the variation of the ratio of primary and secondary air. The study presents temperature, pressure, and emission measurements. It is found that the flame can be operated over a large range of equivalence ratios and preheating temperatures up to 500 °C. As expected, the NOx emissions are mainly influenced by the local equivalence ratio, which can be controlled by the fuel mass flow or the dilution hole pattern in the flame tube. Furthermore, the results show a decrease of NOx when the power density is increased at constant equivalence ratios, and a rise of NOx during the fuel transition from natural gas to hydrogen. The results indicate certain differences to the findings of phase 1.

References

1.
ETN
,
2020
, “
Hydrogen Gas Turbines—The Path Towards a Zero-Carbon Gas Turbine
,” European Turbine Network (ETN Global), Brussels, Belgium, Report No. 1.
2.
Cecere
,
D.
,
Giacomazzi
,
E.
,
Di Nardo
,
A.
, and
Calchetti
,
G.
,
2023
, “
Gas Turbine Combustion Technologies for Hydrogen Blends
,”
Energies
,
16
(
19
), p.
6829
.10.3390/en16196829
3.
Lingstädt
,
T.
,
Seliger
,
H.
,
Reh
,
S.
, and
Huber
,
A.
,
2018
, “
Technologiebericht 2.2b Dezentrale Kraftwerke (Motoren und Turbinen)
,” Wuppertal Institut, ISI, IZES, Saarbrücken, Germany, Technologien für die Energiewende. Teilbericht 2 an das Bundesministerium für Wirtschaft und Energie (BMWi) 2.
4.
Reale
,
F.
, and
Sannino
,
R.
,
2022
, “
Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review
,”
Energies
,
15
(
3
), p.
900
.10.3390/en15030900
5.
Liu
,
A.
,
Yang
,
Y.
,
Chen
,
L.
,
Zeng
,
W.
, and
Wang
,
C.
,
2020
, “
Experimental Study of Biogas Combustion and Emissions for a Micro Gas Turbine
,”
Fuel
,
267
, p.
117312
.10.1016/j.fuel.2020.117312
6.
Okafor
,
E. C.
,
Somarathne
,
K. A.
,
Ratthanan
,
R.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
,
Tsujimura
,
T.
,
Furutani
,
H.
, and
Kobayashi
,
H.
,
2020
, “
Control of NOx and Other Emissions in Micro Gas Turbine Combustors Fuelled With Mixtures of Methane and Ammonia
,”
Combust. Flame
,
211
, pp.
406
416
.10.1016/j.combustflame.2019.10.012
7.
Du Toit
,
M.
,
Engelbrecht
,
N.
,
Oelofse
,
S. P.
, and
Bessarabov
,
D.
,
2020
, “
Performance Evaluation and Emissions Reduction of a Micro Gas Turbine Via the Co-Combustion of H2/CH4/CO2 Fuel Blends
,”
Sustainable Energy Technol. Assess.
,
39
, p.
100718
.10.1016/j.seta.2020.100718
8.
de Santoli
,
L.
,
Lo Basso
,
G.
,
Barati
,
S.
,
D'Ambra
,
S.
, and
Fasolilli
,
C.
,
2020
, “
Seasonal Energy and Environmental Characterization of a Micro Gas Turbine Fueled With H2NG Blends
,”
Energy
,
193
, p.
116678
.10.1016/j.energy.2019.116678
9.
Therkelsen
,
P.
,
Mauzey
,
J.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2006
, “
Evaluation of a Low Emission Gas Turbine Operated on Hydrogen
,”
ASME
Paper No. GT2006-90725.10.1115/GT2006-90725
10.
Therkelsen
,
P.
,
Werts
,
T.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2009
, “
Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031507
.10.1115/1.3028232
11.
Devriese
,
C.
,
Penninx
,
G.
,
de Ruiter
,
G.
,
Bastiaans
,
R.
, and
De Paepe
,
W.
,
2020
, “
The CFD Design and Optimisation of a 100 kW Hydrogen Fuelled mGT
,”
ASME
Paper No. GT2020-14473.10.1115/GT2020-14473
12.
Banihabib
,
R.
, and
Assadi
,
M.
,
2022
, “
A Hydrogen-Fueled Micro Gas Turbine Unit for Carbon-Free Heat and Power Generation
,”
Sustainability
,
14
(
20
), p.
13305
.10.3390/su142013305
13.
Hohloch
,
M.
,
Lingstädt
,
T.
, and
Kutne
,
P.
,
2023
, “
Experimental Analysis of the Hydrogen Capability of a Fuel Flexible Jet Stabilized Syngas Micro Gas Turbine Combustor Under Atmospheric Conditions
,”
ASME
Paper No. GT2023-103418.10.1115/GT2023-103418
14.
Banihabib
,
R.
,
Lingstädt
,
T.
,
Wersland
,
M.
,
Kutne
,
P.
, and
Assadi
,
M.
,
2024
, “
Development and Testing of a 100 kW Fuel-Flexible Micro Gas Turbine Running on 100% Hydrogen
,”
Int. J. Hydrogen Energy
,
49
, pp.
92
111
.10.1016/j.ijhydene.2023.06.317
15.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.10.1115/1.4029119
16.
Kuhn
,
P.
,
Terhaar
,
S.
,
Reichel
,
T.
, and
Paschereit
,
C. O.
,
2015
, “
Design and Assessment of a Fuel-Flexible Low Emission Combustor for Dry and Steam-Diluted Conditions
,”
ASME
Paper No. GT2015-43375.10.1115/GT2015-43375
17.
Stathopoulos
,
P.
,
Kuhn
,
P.
,
Wendler
,
J.
,
Tanneberger
,
T.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
,
Schmalhofer
,
C.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2017
, “
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041507
.10.1115/1.4034687
18.
Reichel
,
T. G.
, and
Paschereit
,
C. O.
,
2017
, “
Interaction Mechanisms of Fuel Momentum With Flashback Limits in Lean-Premixed Combustion of Hydrogen
,”
Int. J. Hydrogen Energy
,
42
(
7
), pp.
4518
4529
.10.1016/j.ijhydene.2016.11.018
19.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2018
, “
Flashback Resistance and Fuel–Air Mixing in Lean Premixed Hydrogen Combustion
,”
J. Propul. Power
,
34
(
3
), pp.
690
701
.10.2514/1.B36646
20.
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Krüger
,
O.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Numerical Investigation of the Flow Field and Mixing in a Swirl-Stabilized Burner With a Non-Swirling Axial Jet
,”
ASME
Paper No. GT2015-43382.10.1115/GT2015-43382
21.
Mira
,
D.
,
Lehmkuhl
,
O.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Paschereit
,
C. O.
,
Vázquez
,
M.
, and
Houzeaux
,
G.
,
2018
, “
Numerical Investigation of a Lean Premixed Swirl-Stabilized Hydrogen Combustor and Operational Conditions Close to Flashback
,”
ASME
Paper No. GT2018-76229.10.1115/GT2018-76229
22.
Mira
,
D.
,
Lehmkuhl
,
O.
,
Both
,
A.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Paschereit
,
C. O.
,
Vázquez
,
M.
, and
Houzeaux
,
G.
,
2020
, “
Numerical Characterization of a Premixed Hydrogen Flame Under Conditions Close to Flashback
,”
Flow, Turbul. Combust.
,
104
(
2–3
), pp.
479
507
.10.1007/s10494-019-00106-z
23.
Mira
,
D.
,
Both
,
A.
,
Lehmkuhl
,
B. O.
,
Gomez Gonzalez
,
S.
,
Forck
,
J.
,
Tanneberger
,
T.
,
Stathopoulos
,
P.
, and
Paschereit
,
C. O.
,
2021
, “
High-Fidelity Simulations of the Mixing and Combustion of a Technically Premixed Hydrogen Flame
,”
Tenth European Combustion Meeting: Virtual Edition: Proceedings Volume
,
Napoli, Italy
,
Apr. 14–15
, pp.
1104
1109
.https://www.researchgate.net/publication/357159500_Highfidelity_simulations_of_the_mixing_and_combustion_of_a_technically_premixed_hydrogen_flame
24.
Tanneberger
,
T.
,
Mundstock
,
J.
,
Rex
,
C.
,
Rösch
,
S.
, and
Paschereit
,
C. O.
,
2024
, “
Development of a Hydrogen Micro Gas Turbine Combustor: Atmospheric Pressure Testing
,”
ASME J. Eng. Gas Turbines Power
,
146
(
4
), p.
041013
.10.1115/1.4063708
25.
Príkopský
,
K.
,
2007
, “
Characterization of Continuous Diffusion Flames in Supercritical Water
,”
Ph.D. thesis
,
ETH Zurich, Zurich, Switzerland
.https://www.researchcollection.ethz.ch/bitstream/handle/20.500.11850/4135/eth-29992-02.pdf
26.
Garan
,
N.
,
Dybe
,
S.
,
Paschereit
,
C. O.
, and
Djordjevic
,
N.
,
2023
, “
Consistent Emission Correction Factors Applicable to Novel Energy Carriers and Conversion Concepts
,”
Fuel
,
341
, p.
127658
.10.1016/j.fuel.2023.127658
27.
Douglas
,
C.
,
Emerson
,
B.
,
Lieuwen
,
T.
,
Martz
,
T.
,
Steele
,
R.
, and
Noble
,
B.
,
2022
, “
NOx Emissions from Hydrogen-Methane Fuel Blends
,” Georgia Institute of Technology, Strategic Energy Institute, Atlanta, GA, Report.https://research.gatech.edu/sites/default/files/inlinefiles/gt_epri_nox_emission_h2_short_paper.pdf
28.
Funke
,
H. H.-W.
,
Beckmann
,
N.
, and
Abanteriba
,
S.
,
2019
, “
An Overview on Dry Low NOx Micromix Combustor Development for Hydrogen-Rich Gas Turbine Applications
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6978
6990
.10.1016/j.ijhydene.2019.01.161
You do not currently have access to this content.