Abstract

Pumped thermal energy storage (PTES) systems are grid batteries that use heat pumps to create both hot and cold thermal energy stores when there is excess electricity and then use a power cycle to convert the thermal energy into electricity when there is demand for electricity. In normal operation, Joule–Brayton PTES discharges low-grade heat at temperatures useful for thermal energy consumers like district and industrial heating. Furthermore, PTES designs, like conventional combined heat and power (CHP) technology, can be modified to sacrifice some round-trip efficiency (RTE) to increase the temperature of heat rejection. This paper uses design-point performance and cost models that provide a detailed understanding of the efficiency and cost tradeoffs of rejecting heat at various temperatures in ideal-gas Brayton PTES configurations. First, we keep the heat rejection in its nominal location in the PTES system: in the discharge cycle after the low-pressure exit of the recuperator before the cold-storage heat exchanger. Next, we move the heat rejection to the discharge turbine exit. We define design-point metrics that isolate both the cost and performance penalty associated with the hotter heat rejection and attribute it exclusively to the heat economic metrics. Finally, we estimate the performance of electric heater technology to generate heat at equivalent temperatures. We find that the levelized cost of heat (LCOH), including the cost of thermal energy storage (TES) buffering the PTES and heat off-taker, compares favorably versus electric technologies and is less than the cost of natural gas for low temperature scenarios and competitive with the cost of natural gas in some regions of the contiguous U.S. in high temperature scenarios.

References

1.
Marguerre
,
F.
,
1924
, “
Ueber Ein Neues Verfahren Zur Aufspeicherung Elektrischer Energie
,” Mitt. Ver. Elektrizitätswerke, 354, pp.
27
35
.
2.
Morgan
,
R.
,
Nelmes
,
S.
,
Gibson
,
E.
, and
Brett
,
G.
,
2015
, “
Liquid Air Energy Storage—Analysis and First Results From a Pilot Scale Demonstration Plant
,”
Appl. Energy
,
137
, pp.
845
853
.10.1016/j.apenergy.2014.07.109
3.
Howes
,
J.
,
2012
, “
Concept and Development of a Pumped Heat Electricity Storage Device
,”
Proc. IEEE
,
100
(
2
), pp.
493
503
.10.1109/JPROC.2011.2174529
4.
Morandin
,
M.
,
Mercangöz
,
M.
,
Hemrle
,
J.
,
Maréchal
,
F.
, and
Favrat
,
D.
,
2013
, “
Thermoeconomic Design Optimization of a Thermo-Electric Energy Storage System Based on Transcritical CO2 Cycles
,”
Energy
,
58
, pp.
571
587
.10.1016/j.energy.2013.05.038
5.
Desrues
,
T.
,
Ruer
,
J.
,
Marty
,
P.
, and
Fourmigué
,
J. F.
,
2010
, “
A Thermal Energy Storage Process for Large Scale Electric Applications
,”
Appl. Therm. Eng.
,
30
(
5
), pp.
425
432
.10.1016/j.applthermaleng.2009.10.002
6.
Olympios
,
A. V.
,
McTigue
,
J. D.
,
Farres-Antunez
,
P.
,
Tafone
,
A.
,
Romagnoli
,
A.
,
Li
,
Y.
,
Ding
,
Y.
, et al.,
2021
, “
Progress and Prospects of Thermo-Mechanical Energy Storage—A Critical Review
,”
Prog. Energy
,
3
(
2
), p.
022001
.10.1088/2516-1083/abdbba
7.
Novotny
,
V.
,
Basta
,
V.
,
Smola
,
P.
, and
Spale
,
J.
,
2022
, “
Review of Carnot Battery Technology Commercial Development
,”
Energies
,
15
(
2
), p.
647
.10.3390/en15020647
8.
Laughlin
,
R. B.
,
2017
, “
Pumped Thermal Grid Storage With Heat Exchange
,”
J. Renewable Sustainable Energy
,
9
(
4
), p.
044103
.10.1063/1.4994054
9.
Smith
,
N. R.
,
Just
,
J.
,
Johnson
,
J.
, and
Bulnes
,
F. K.
,
2023
, “
Performance Characterization of a Small-Scale Pumped Thermal Energy Storage System
,”
ASME
Paper No. GT2023-104232.10.1115/GT2023-104232
10.
Echogen Power Systems
, 2024, “
Energy Storage
,” Echogen Power Systems, Akron, OH, accessed Aug. 26, 2024, https://www.echogen.com/energy-storage/
11.
Energy Dome
, 2024, “
CO2 Battery
,” Energy Dome, Milan, Italy, accessed Aug. 26, 2024, https://energydome.com/co2-battery/
12.
Ma, Z., Gifford, J., Wang, X., and Martinek, J., 2023, “Electric-Thermal Energy Storage Using Solid Particles as Storage Media,”
Joule
, 7(5), pp.
843
848
.10.1016/j.joule.2023.03.016
13.
McTigue
,
J. D.
,
Farres-Antunez
,
P.
,
Kavin Sundarnath
,
J.
,
Markides
,
C. N.
, and
White
,
A. J.
,
2022
, “
Techno-Economic Analysis of Recuperated Joule-Brayton Pumped Thermal Energy Storage
,”
Energy Convers. Manage.
,
252
, p.
115016
.10.1016/j.enconman.2021.115016
14.
Jorgenson
,
J.
,
Frazier
,
A. W.
,
Denholm
,
P.
, and
Blair
,
N.
,
2022
, “
Storage Futures Study: Grid Operational Impacts of Widespread Storage Deployment
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-6A40-80688
.https://www.nrel.gov/docs/fy22osti/81956.pdf
15.
Steinmann
,
W.-D.
,
Bauer
,
D.
,
Jockenhöfer
,
H.
, and
Johnson
,
M.
,
2019
, “
Pumped Thermal Energy Storage (PTES) as Smart Sector-Coupling Technology for Heat and Electricity
,”
Energy
,
183
, pp.
185
190
.10.1016/j.energy.2019.06.058
16.
Trevisan
,
S.
,
Shamsi
,
S. S. M.
,
Maccarini
,
S.
,
Barberis
,
S.
, and
Guedez
,
R.
,
2023
, “
Techno-Economic Assessment of CO2 Based Power to Heat to Power Systems for Industrial Applications
,”
ASME
Paper No. GT2023-101892.10.1115/GT2023-101892
17.
Farres-Antunez
,
P.
,
McTigue
,
J. D.
,
Morgan
,
R.
, and
White
,
A. J.
,
2022
, “
Integrated Pumped Thermal and Liquid Air Energy Storage
,”
Encyclopedia of Energy Storage
,
Elsevier
, Amsterdam, The Netherlands, pp.
29
45
.
18.
Dumont
,
O.
,
Frate
,
G. F.
,
Pillai
,
A.
,
Lecompte
,
S.
,
De Paepe
,
M.
, and
Lemort
,
V.
,
2020
, “
Carnot Battery Technology: A State-of-the-Art Review
,”
J. Energy Storage
,
32
, p.
101756
.10.1016/j.est.2020.101756
19.
U.S. Energy Information Agency
, 2016, “
2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary
,” U.S. Energy Information Agency, Washington, DC, accessed Aug. 26, 2024, https://www.eia.gov/consumption/commercial/reports/2012/energyusage/index.php
20.
Schoeneberger
,
C. A.
,
McMillan
,
C. A.
,
Kurup
,
P.
,
Akar
,
S.
,
Margolis
,
R.
, and
Masanet
,
E.
,
2020
, “
Solar for Industrial Process Heat: A Review of Technologies, Analysis Approaches, and Potential Applications in the United States
,”
Energy
,
206
, p.
118083
.10.1016/j.energy.2020.118083
21.
McMillan
,
C. A.
, and
Ruth
,
M.
,
2019
, “
Using Facility-Level Emissions Data to Estimate the Technical Potential of Alternative Thermal Sources to Meet Industrial Heat Demand
,”
Appl. Energy
,
239
, pp.
1077
1090
.10.1016/j.apenergy.2019.01.077
22.
Short
,
W.
,
Packey
,
D. J.
, and
Holt
,
T.
,
1995
, “
A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-462-5173
.https://www.nrel.gov/docs/legosti/old/5173.pdf
23.
Albertus
,
P.
,
Manser
,
J. S.
, and
Litzelman
,
S.
,
2020
, “
Long-Duration Electricity Storage Applications, Economics, and Technologies
,”
Joule
,
4
(
1
), pp.
21
32
.10.1016/j.joule.2019.11.009
24.
The Engineering ToolBox
, 2003, “
Heat Exchangers—Overall Heat Transfer Coefficients
,” The Engineering ToolBox, accessed Aug. 26, 2024, https://www.engineeringtoolbox.com/heat-transfer-coefficients-exchangers-d_450.html
25.
Ma
,
Z.
,
2023
, “
Economic Long-Duration Electricity Storage by Using Low-Cost Thermal Energy Storage and High-Efficiency Power Cycle (ENDURING)
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-5700-84728
.https://www.nrel.gov/docs/fy23osti/84728.pdf
26.
Arpagaus
,
C.
,
Bless
,
F.
,
Uhlmann
,
M.
,
Schiffmann
,
J.
, and
Bertsch
,
S. S.
,
2018
, “
High Temperature Heat Pumps: Market Overview, State of the Art, Research Status, Refrigerants, and Application Potentials
,”
Energy
,
152
, pp.
985
1010
.10.1016/j.energy.2018.03.166
27.
U.S. Energy Information Agency
, 2024, “
Henry Hub Natural Gas Spot Price
,” U.S. Energy Information Agency, Washington, DC, accessed Aug. 26, 2024, https://www.eia.gov/dnav/ng/hist/rngwhhdA.htm
28.
U.S. Energy Information Agency
, 2024, “
Natural Gas Prices. Area: California. Period: Monthly
,” U.S. Energy Information Agency, Washington, DC, accessed Aug. 26, 2024, https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_SCA_m.htm
You do not currently have access to this content.