Abstract

The performance of aerospace vehicles directly depends on the operation of large combustion propulsion devices. Combustion instability has long been an inevitable and challenging problem in the development of large combustion propulsion devices. In this study, the dynamic characteristics of combustion instability under different injection schemes in a Helmholtz pulse combustor were investigated experimentally. The ion concentration signals at different locations in the combustor were acquired to characterize the dynamic process of unsteady combustion with different injection parameters. The flow field characteristics and reactant components distribution of the dual jet flame were simulated numerically. The results indicate that injection schemes with a large fuel injection angle ϕ and nozzle hole spacing are not conducive to combustion stability. A large fuel injection angle ϕ and nozzle-hole spacing L can prevent fuel jet convergence, thus dividing the central flame front into two parts: one is located near the nozzle outlet with fuel-rich combustion, and the other is close to the combustor wall with fuel-lean combustion. The fuel-rich state can more easily stimulate combustion instability than the fuel-lean state. Compared with the original converging jet, the newly established fuel-rich combustion region increases the occurrence of combustion instability. Nevertheless, the excessive fuel injection angle ϕ and nozzle-hole spacing L may result in the peak of the combustion heat release preceding the pressure oscillation, which is not conducive to combustion instability.

References

1.
Rubiella
,
C.
,
Byun
,
H.
,
Park
,
Y.
, and
Do
,
H.
,
2024
, “
Novel Combustion Instability Diagnosis Method With Upstream Pulsation of Repetitive Laser-Induced Plasmas
,”
ASME J. Eng. Gas Turbines Power
,
146
(
9
), p.
091020
.10.1115/1.4064806
2.
Zhao
,
D.
,
Lu
,
Z.
,
Zhao
,
H.
,
Li
,
X. Y.
,
Wang
,
B.
, and
Liu
,
P.
,
2018
, “
A Review of Active Control Approaches in Stabilizing Combustion Systems in Aerospace Industry
,”
Prog. Aerosp. Sci.
,
97
, pp.
35
60
.10.1016/j.paerosci.2018.01.002
3.
Cheng
,
Y.
,
Jin
,
T.
,
Luo
,
K.
,
Li
,
Z.
,
Wang
,
H.
, and
Fan
,
J.
,
2021
, “
Large Eddy Simulations of Spray Combustion Instability in an Aero-Engine Combustor at Elevated Temperature and Pressure
,”
Aerosp. Sci. Technol.
,
108
, p.
106329
.10.1016/j.ast.2020.106329
4.
Johnson
,
M.
,
James
,
A.
, and
Agrawal
,
A.
,
2024
, “
Effect of Insert Porosity on Combustion Instability in a Lean Premixed Combustor Analyzed by a Proper Orthogonal Decomposition-Based Phase Reconstruction Technique
,”
ASME J. Eng. Gas Turbines Power
,
146
(
8
), p.
081006
.10.1115/1.4064152
5.
Beita
,
J.
,
Talibi
,
M.
,
Sadasivuni
,
S.
, and
Balachandran
,
R.
,
2021
, “
Thermoacoustic Instability Considerations for High Hydrogen Combustion in Lean Premixed Gas Turbine Combustors: A Review
,”
Hydrogen
,
2
(
1
), pp.
33
57
.10.3390/hydrogen2010003
6.
Howie
,
A.
,
Doleiden
,
D.
,
Peluso
,
S.
, and
O'Connor
,
J.
,
2021
, “
The Effect of the Degree of Premixedness on Self-Excited Combustion Instability
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071024
.10.1115/1.4049486
7.
McManus
,
K. R.
,
Poinsot
,
T.
, and
Candel
,
S. M.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.10.1016/0360-1285(93)90020-F
8.
Li
,
F. Y.
,
Cao
,
Z.
,
Xu
,
L. J.
, and
Xie
,
Y. X.
,
2018
, “
Prediction of Equivalence Ratio in Pulse Combustor From Ion Current Amplitude Spectrum
,”
Fuel
,
218
, pp.
179
187
.10.1016/j.fuel.2018.01.004
9.
Yang
,
L. Y.
,
Yin
,
Z. R.
,
He
,
M.
,
Duan
,
R. Z.
, and
Li
,
F. Y.
,
2013
, “
Nonlinear Analysis of a Pulse Combustor Model With Exhaust Decoupler
,”
Combust. Flame
,
160
(
12
), pp.
2866
2878
.10.1016/j.combustflame.2013.07.003
10.
Ćosić
,
B.
,
Reichel
,
T. G.
, and
Paschereit
,
C. O.
,
2012
, “
Acoustic Response of a Helmholtz Resonator Exposed to Hot-Gas Penetration and High Amplitude Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101503
.10.1115/1.4007024
11.
Keller
,
J. O.
,
Bramlette
,
T. T.
,
Dec
,
J. E.
, and
Westbrook
,
C. K.
,
1989
, “
Pulse Combustion: The Importance of Characteristic Times
,”
Combust. Flame
,
75
(
1
), pp.
33
44
.10.1016/0010-2180(89)90085-0
12.
Keller
,
J. O.
,
Bramlette
,
T. T.
,
Barr
,
P. K.
, and
Alvarez
,
J. R.
,
1994
, “
NOx and CO Emissions From a Pulse Combustor Operating in a Lean Premixed Mode
,”
Combust. Flame
,
99
(
3–4
), pp.
460
466
.10.1016/0010-2180(94)90037-X
13.
Barr
,
P. K.
,
Keller
,
J. O.
,
Bramlette
,
T. T.
,
Westbrook
,
C. K.
, and
Dec
,
J. E.
,
1990
, “
Pulse Combustor Modeling Demonstration of the Importance of Characteristic Times
,”
Combust. Flame
,
82
(
3–4
), pp.
252
269
.10.1016/0010-2180(90)90002-9
14.
Dec
,
J. E.
,
Keller
,
J. O.
, and
Arpaci
,
V. S.
,
1992
, “
Heat Transfer Enhancement in the Oscillating Turbulent Flow of a Pulse Combustor Tail Pipe
,”
Int. J. Heat Mass Transf
er ,
35
(
9
), pp.
2311
2325
.10.1016/0017-9310(92)90074-3
15.
Dec
,
J. E.
, and
Keller
,
J. O.
,
1989
, “
Pulse Combustor Tail-Pipe Heat-Transfer Dependence on Frequency, Amplitude, and Mean Flow Rate
,”
Combust. Flame
,
77
(
3–4
), pp.
359
374
.10.1016/0010-2180(89)90141-7
16.
Dec
,
J. E.
, and
Keller
,
J. O.
,
1990
, “
Time-Resolved Gas Temperatures in the Oscillating Turbulent Flow of a Pulse Combustor Tail Pipe
,”
Combust. Flame
,
80
(
3–4
), pp.
358
370
.10.1016/0010-2180(90)90112-5
17.
Zinn
,
B. T.
,
1992
, “
Pulse Combustion: Recent Applications and Research Issues
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
1297
1305
.10.1016/S0082-0784(06)80151-7
18.
Reuter
,
D.
,
Daniel
,
B. R.
,
Jagoda
,
J.
, and
Zinn
,
B. T.
,
1986
, “
Periodic Mixing and Combustion Processes in Gas Fired Pulsating Combustors
,”
Combust. Flame
,
65
(
3
), pp.
281
290
.10.1016/0010-2180(86)90042-8
19.
Zinn
,
B. T.
, and
Lieuwen
,
T. C.
,
2005
, “
Combustion Instabilities: Basic Concepts
,”
Prog. Astronaut. Aeronaut.
,
210
, pp.
3
26
.10.2514/5.9781600866807.0003.0026
20.
Tang
,
Y. M.
,
Waldherr
,
G.
,
Jagoda
,
J. I.
, and
Zinn
,
B. T.
,
1995
, “
Heat Release Timing in a Nonpremixed Helmholtz Pulse Combustor
,”
Combust. Flame
,
100
(
1–2
), pp.
251
261
.10.1016/0010-2180(94)00054-V
21.
Bellucci
,
V.
,
Flohr
,
P.
,
Paschereit
,
C. O.
, and
Magni
,
F.
,
2004
, “
On the Use of Helmholtz Resonators for Damping Acoustic Pulsations in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
271
275
.10.1115/1.1473152
22.
Dupère
,
I. D. J.
, and
Dowling
,
A. P.
,
2005
, “
The Use of Helmholtz Resonators in a Practical Combustor
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
268
275
.10.1115/1.1806838
23.
Gysling
,
D. L.
,
Copeland
,
G. S.
,
McCormick
,
D. C.
, and
Proscia
,
W. M.
,
2000
, “
Combustion System Damping Augmentation With Helmholtz Resonators
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
269
274
.10.1115/1.483205
24.
Wang
,
J.
,
Shi
,
J.
,
Deng
,
J.
,
Miao
,
X.
,
Liu
,
Y.
,
Pan
,
S.
, and
Li
,
L.
,
2022
, “
Misfire and Knock Detection Based on the Ion Current Inside a Passive Pre-Chamber of Gasoline Engine
,”
Fuel
,
311
, p.
122528
.10.1016/j.fuel.2021.122528
25.
Schneider
,
D.
, and
Lai
,
M. C. D.
,
1999
, “
Real-Time Air/Fuel-Ratio Control in a Small SI Engine Using the Ionic Current Signal
,”
SAE
Paper No. 1999-01-3323. 10.4271/1999-01-3323
26.
Chao
,
Y.
,
Chen
,
X.
,
Deng
,
J.
,
Hu
,
Z.
,
Wu
,
Z.
, and
Li
,
L.
,
2018
, “
Additional Injection Timing Effects on First Cycle During Gasoline Engine Cold Start Based on Ion Current Detection System
,”
Appl. Energy
,
221
, pp.
55
66
.10.1016/j.apenergy.2018.03.056
27.
Yatsufusa
,
T.
,
Kii
,
K.
,
Miura
,
N.
,
Yamamoto
,
H.
,
Kawasaki
,
A.
,
Matsuoka
,
K.
, and
Kasahara
,
J.
,
2020
, “
Investigation of the Measurement Characteristics of a Multiple-Ion-Probe Method for a Propagating Methane-Oxygen-Nitrogen Flame
,”
Combust. Flame
,
211
, pp.
112
123
.10.1016/j.combustflame.2019.09.022
28.
Du
,
M. L.
,
Yang
,
L. J.
, and
Yin
,
Z. R.
,
2017
, “
Experimental and Modeling Studies of a Multi-Tailpipe on a Pulse Combustor System
,”
Int. J. Energy Res.
,
41
(
7
), pp.
1029
1048
.10.1002/er.3695
29.
Calcote
,
H. F.
, and
Keil
,
D. G.
,
1990
, “
The Role of Ions in Soot Formation
,”
Pure Appl. Chem.
,
62
(
5
), pp.
815
824
.10.1351/pac199062050815
30.
De Boer
,
P. C. T.
,
1966
, “
Probe for Measuring Ion Density in Slightly Ionized, High Speed Flow
,”
Rev. Sci. Instrum.
,
37
(
6
), pp.
775
785
.10.1063/1.1720321
31.
Sudit
,
I. D.
, and
Woods
,
R. C.
,
1994
, “
A Study of the Accuracy of Various Langmuir Probe Theories
,”
J. Appl. Phys.
,
76
(
8
), pp.
4488
4498
.10.1063/1.357280
32.
Tuszewski
,
M.
, and
Tobin
,
J. A.
,
1996
, “
The Accuracy of Langmuir Probe Ion Density Measurements in Low-Frequency RF Discharges
,”
Plasma Sources Sci. Technol.
,
5
(
4
), pp.
640
647
.10.1088/0963-0252/5/4/005
33.
Hamins
,
A.
,
Yang
,
J. C.
, and
Kashiwagi
,
T.
,
1992
, “
An Experimental Investigation of Pulsation Frequency of Flames
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
1695
1702
.10.1016/S0082-0784(06)80198-0
34.
Li
,
F. Y.
,
Du
,
M. L.
, and
Yang
,
L. J.
,
2021
, “
Effect of Fuel Injection Parameters on Performance Characteristics and Emissions of a Thermoacoustic System
,”
Aerosp. Sci. Technol.
,
110
, p.
106512
.10.1016/j.ast.2021.106512
35.
Sa
,
B.
,
Shao
,
W.
,
Ge
,
Z.
,
Bi
,
X.
,
Wang
,
Z.
, and
Xu
,
X.
,
2025
, “
Experimental Investigation on Macrostructure and Evolution of Hydrogen-Air Micro-Mix Multi-Jet Flames
,”
Int. J. Hydrogen Energy
,
97
, pp.
25
37
.10.1016/j.ijhydene.2024.11.297
36.
Kiran
,
D.
,
Minamoto
,
Y.
,
Osawa
,
K.
,
Shimura
,
M.
, and
Tanahashi
,
M.
,
2024
, “
A Direct Numerical Simulation Study for Flame Structure and Propagation Characteristics of Multi-Jet Flames
,”
Combust. Sci. Technol.
,
196
(
18
), pp.
5064
5088
.10.1080/00102202.2023.2249220
37.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
38.
Launder
,
B. E.
,
Morse
,
A.
,
Rodi
,
W.
, and
Spalding
,
D. B.
,
1972
, “
Prediction of Free Shear Flows: A Comparison of the Performance of Six Turbulence Models
,”
NASA Langley Res. Cent. Free Turbul. Shear Flows
,
1
, pp.
361
426
.https://ntrs.nasa.gov/citations/19730019433
You do not currently have access to this content.