Abstract

Two potential decarbonization pathways for natural gas (NG)-fueled gas turbine engines include blending hydrogen (H2) into NG and postcombustion carbon capture. H2 blending changes several combustion properties, including flame speed and stretch sensitivity. The use of post-combustion carbon capture systems is typically facilitated by the implementation of exhaust gas recirculation (EGR), where exhaust gases are injected into the inlet of the engine, increasing carbon dioxide (CO2) concentration at the outlet and, hence, increasing the efficiency of carbon capture technologies. In this work, we explore the impact of H2 blending and EGR on the stability of a swirl-stabilized, central-piloted flame. Mixtures of NG and H2 are tested at a range of different diluent compositions, with oxygen varied from 21% to 15% by volume in the oxidizer. In all cases, a constant adiabatic flame temperature is maintained to mimic the operation of a gas turbine at a given turbine inlet temperature. A variable-length combustor is used for testing, where combustor length is varied to understand the dynamic stability characteristics of the system. Results show that EGR and H2 work in opposition to each other, where higher levels of EGR result in poor flame holding and higher levels of H2 result in better flame holding. Increasing H2 generally increases the amplitude of thermoacoustic instability at each condition, a result of the change in flame position in this particular combustor. Importantly, H2 can be added to NG to improve flame holding without significantly decreasing CO2 levels in the products, showing that H2 blending can be a method for counteracting combustor operability issues that arise from high levels of EGR necessary to improve the efficiency of typical carbon capture systems.

References

1.
UNFCCC,
2015
, “
Paris Agreement to the United Nations Framework Convention on Climate Change
,” The United Nations Framework Convention on Climate Change (UNFCCC), Bonn, Germany, T.I.A.S. No.
16
1104
.
2.
EUR-Lex,
2021
, “
European Climate Law, Regulation (EU) 2021/1119
,” EUR-Lex, Luxembourg.
3.
Mac Kinnon
,
M. A.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2018
, “
The Role of Natural Gas and Its Infrastructure in Mitigating Greenhouse Gas Emissions, Improving Regional Air Quality, and Renewable Resource Integration
,”
Prog. Energy Combust. Sci.
,
64
, pp.
62
92
.10.1016/j.pecs.2017.10.002
4.
Noble
,
D.
,
Wu
,
D.
,
Emerson
,
B.
,
Sheppard
,
S.
,
Lieuwen
,
T.
, and
Angello
,
L.
,
2021
, “
Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas Turbines Considering a Low-Carbon Future
,”
ASME J. Eng. Gas Turbine Power
,
143
(
4
), p.
041002
.10.1115/1.4049346
5.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W. I. F.
, and
Bowen
,
P. J.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
6.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbine Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
7.
Strollo
,
J.
,
Peluso
,
S.
, and
O'Connor
,
J.
,
2021
, “
Effect of Hydrogen on Steady-State and Transient Combustion Instability Characteristics
,”
ASME J. Eng. Gas Turbine Power
,
143
(
7
), p.
071023
.10.1115/1.4049481
8.
Karlis
,
E.
,
Liu
,
Y.
,
Hardalupas
,
Y.
, and
Taylor
,
A. M. K. P.
,
2019
, “
H2 Enrichment of CH4 Blends in Lean Premixed Gas Turbine Combustion: An Experimental Study on Effects on Flame Shape and Thermoacoustic Oscillation Dynamics
,”
Fuel
,
254
, p.
115524
.10.1016/j.fuel.2019.05.107
9.
Shanbhogue
,
S. J.
,
Sanusi
,
Y. S.
,
Taamallah
,
S.
,
Habib
,
M. A.
,
Mokheimer
,
E. M. A.
, and
Ghoniem
,
A. F.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
10.
Harper
,
J.
,
Cloyd
,
S.
,
Pigon
,
T.
,
Thomas
,
B.
,
Wilson
,
J.
,
Johnson
,
E.
, and
Noble
,
D. R.
,
2023
, “
Hydrogen Co-Firing Demonstration at Georgia Power's Plant McDonough: M501G Gas Turbine
,”
ASME
Paper No. GT2023-102660.10.1115/GT2023-102660
11.
Glassman
,
I.
,
Yetter
,
R. A.
, and
Glumac
,
N. G.
,
2014
,
Combustion
,
Academic Press
,
Waltham, MA
.
12.
Jiang
,
Y.
,
del Alamo
,
G.
,
Gruber
,
A.
,
Bothien
,
M. R.
,
Seshadri
,
K.
, and
Williams
,
F. A.
,
2019
, “
A Skeletal Mechanism for Prediction of Ignition Delay Times and Laminar Premixed Flame Velocities of Hydrogen-Methane Mixtures Under Gas Turbine Conditions
,”
Int. J. Hydrogen Energy
,
44
(
33
), pp.
18573
18585
.10.1016/j.ijhydene.2019.05.068
13.
Bougrine
,
S.
,
Richard
,
S.
,
Nicolle
,
A.
, and
Veynante
,
D.
,
2011
, “
Numerical Study of Laminar Flame Properties of Diluted Methane-Hydrogen-Air Flames at High Pressure and Temperature Using Detailed Chemistry
,”
Int. J. Hydrogen Energy
,
36
(
18
), pp.
12035
12047
.10.1016/j.ijhydene.2011.06.053
14.
Donohoe
,
N.
,
Heufer
,
A.
,
Metcalfe
,
W. K.
,
Curran
,
H. J.
,
Davis
,
M. L.
,
Mathieu
,
O.
,
Plichta
,
D.
,
Morones
,
A.
,
Petersen
,
E. L.
, and
Güthe
,
F.
,
2014
, “
Ignition Delay Times, Laminar Flame Speeds, and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
Combust. Flame
,
161
(
6
), pp.
1432
1443
.10.1016/j.combustflame.2013.12.005
15.
Halter
,
F.
,
Chauveau
,
C.
,
Djebaïli-Chaumeix
,
N.
, and
Gökalp
,
I.
,
2005
, “
Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane–Hydrogen–Air Mixtures
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
201
208
.10.1016/j.proci.2004.08.195
16.
Fairweather
,
M.
,
Ormsby
,
M. P.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
2009
, “
Turbulent Burning Rates of Methane and Methane–Hydrogen Mixtures
,”
Combust. Flame
,
156
(
4
), pp.
780
790
.10.1016/j.combustflame.2009.02.001
17.
Beerer
,
D.
,
McDonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R. K.
,
2014
, “
Flashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low-Swirl Injector at Elevated Pressures and Temperatures
,”
ASME J Eng Gas Turbine Power
,
136
(
3
), p.
031502
.10.1115/1.4025636
18.
Marshall
,
A.
,
Lundrigan
,
J.
,
Venkateswaran
,
P.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Measurements of Stretch Statistics at Flame Leading Points for High Hydrogen Content Fuels
,”
ASME J. Eng. Gas Turbine Power
,
139
(
11
), p.
111503
.10.1115/1.4035819
19.
Venkateswaran
,
P.
,
Marshall
,
A. D.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T. C.
,
2014
, “
Turbulent Consumption Speeds of High Hydrogen Content Fuels From 1–20 atm
,”
ASME J. Eng. Gas Turbine Power
,
136
(
1
), p.
011504
.10.1115/1.4025210
20.
Breer
,
B.
,
Rajagopalan
,
H.
,
Godbold
,
C.
,
Johnson
,
H.
, II
,
Emerson
,
B.
,
Acharya
,
V.
,
Sun
,
W.
,
Noble
,
D.
, and
Lieuwen
,
T.
,
2023
, “
Numerical Investigation of NOx Production From Premixed Hydrogen/Methane Fuel Blends
,”
Combust. Flame
,
255
, p.
112920
.10.1016/j.combustflame.2023.112920
21.
O'Connor
,
J.
,
2023
, “
Understanding the Role of Flow Dynamics in Thermoacoustic Combustion Instability
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4583
4610
.10.1016/j.proci.2022.07.115
22.
Kang
,
H.
, and
Kim
,
K. T.
,
2021
, “
Combustion Dynamics of Multi-Element Lean-Premixed Hydrogen-Air Flame Ensemble
,”
Combust. Flame
,
233
, p.
111585
.10.1016/j.combustflame.2021.111585
23.
Terhaar
,
S.
,
Krüger
,
O.
, and
Paschereit
,
C. O.
,
2015
, “
Flow Field and Flame Dynamics of Swirling Methane and Hydrogen Flames at Dry and Steam Diluted Conditions
,”
ASME J. Eng. Gas Turbine Power
,
137
(
4
), p.
041503
.10.1115/1.4028392
24.
Aguilar
,
J. G.
,
Æsøy
,
E.
, and
Dawson
,
J. R.
,
2022
, “
The Influence of Hydrogen on the Stability of a Perfectly Premixed Combustor
,”
Combust. Flame
,
245
, p.
112323
.10.1016/j.combustflame.2022.112323
25.
Markewitz
,
P.
,
Kuckshinrichs
,
W.
,
Leitner
,
W.
,
Linssen
,
J.
,
Zapp
,
P.
,
Bongartz
,
R.
,
Schreiber
,
A.
, and
Müller
,
T. E.
,
2012
, “
Worldwide Innovations in the Development of Carbon Capture Technologies and the Utilization of CO2
,”
Energy Environ. Sci.
,
5
(
6
), pp.
7281
7305
.10.1039/c2ee03403d
26.
Burnes
,
D.
, and
Saxena
,
P.
,
2022
, “
Operational Scenarios of a Gas Turbine Using Exhaust Gas Recirculation for Carbon Capture
,”
ASME J. Eng. Gas Turbine Power
,
144
(
2
), p.
021011
.10.1115/1.4052266
27.
Zaidaoui
,
H.
,
Boushaki
,
T.
,
Sautet
,
J. C.
,
Chauveau
,
C.
,
Sarh
,
B.
, and
Gökalp
,
I.
,
2018
, “
Effects of CO2 Dilution and O2 Enrichment on Non-Premixed Turbulent CH4-Air Flames in a Swirl Burner
,”
Combust. Sci. Technol.
,
190
(
5
), pp.
784
802
.10.1080/00102202.2017.1409217
28.
De Santis
,
A.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2016
, “
CFD Analysis of Exhaust Gas Recirculation in a Micro Gas Turbine Combustor for CO2 Capture
,”
Fuel
,
173
, pp.
146
154
.10.1016/j.fuel.2016.01.063
29.
Ferguson
,
D.
,
Ranalli
,
J. A.
, and
Strakey
,
P.
,
2010
, “
Influence of Exhaust Gas Recirculation on Combustion Instabilities in CH4 and H2/CH4 Fuel Mixtures
,”
ASME
Paper No. GT2010-23642.10.1115/GT2010-23642
30.
ElKady
,
A. M.
,
Evulet
,
A.
,
Brand
,
A.
,
Ursin
,
T. P.
, and
Lynghjem
,
A.
,
2009
, “
Application of Exhaust Gas Recirculation in a DLN F-Class Combustion System for Postcombustion Carbon Capture
,”
ASME J. Eng. Gas Turbine Power
,
131
(
3
), p.
034505
.10.1115/1.2982158
31.
Evulet
,
A. T.
,
ELKady
,
A. M.
,
Branda
,
A. R.
, and
Chinn
,
D.
,
2009
, “
On the Performance and Operability of GE's Dry Low NOx Combustors Utilizing Exhaust Gas Recirculation for Postcombustion Carbon Capture
,”
Energy Proc.
,
1
(
1
), pp.
3809
3816
.10.1016/j.egypro.2009.02.182
32.
Roy
,
R.
, and
Gupta
,
A. K.
,
2020
, “
Flame Structure and Emission Signature in Distributed Combustion
,”
Fuel
,
262
, p.
116460
.10.1016/j.fuel.2019.116460
33.
Rodriguez Camacho
,
J.
,
Akiki
,
M.
,
Blust
,
J.
, and
O'Connor
,
J.
,
2024
, “
Effect of Inert Species on the Static and Dynamic Stability of a Piloted, Swirl-Stabilized Flame
,”
ASME J. Eng. Gas Turbine Power
,
146
(
6
), p.
061021
.10.1115/1.4064048
34.
Zhang
,
Q.
,
Shanbhogue
,
S. J.
, Shreekrishna,
Lieuwen
,
T.
, and
O'Connor
,
J.
,
2011
, “
Strain Characteristics Near the Flame Attachment Point in a Swirling Flow
,”
Combust. Sci. Technol.
,
183
(
7
), pp.
665
685
.10.1080/00102202.2010.537288
35.
Foley
,
C.
,
Chterev
,
I.
,
Noble
,
B.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2017
, “
Shear Layer Flame Stabilization Sensitivities in a Swirling Flow
,”
Int. J. Spray Combust. Dyn.
,
9
(
1
), pp.
3
18
.10.1177/1756827716653426
36.
Lhuillier
,
C.
,
Oddos
,
R.
,
Zander
,
L.
,
Lückoff
,
F.
,
Göckeler
,
K.
,
Paschereit
,
C. O.
, and
Djordjevic
,
N.
,
2017
, “
Hydrogen-Enriched Methane Combustion Diluted With Exhaust Gas and Steam: Fundamental Investigation on Laminar Flames and NOx Emissions
,”
ASME
Paper No. GT2017-64885.10.1115/GT2017-64885
37.
Li
,
J.
,
Peluso
,
S.
,
Quay
,
B.
,
Santavicca
,
D.
,
Blust
,
J.
, and
Srinivasan
,
R.
,
2017
, “
Effect of Pilot Flame on Flame Macrostructure and Combustion Instability
,”
ASME
Paper No. GT2017-64079.10.1115/GT2017-64079
38.
Alvarez
,
R.
,
Rodero
,
A.
, and
Quintero
,
M. C.
,
2002
, “
An Abel Inversion Method for Radially Resolved Measurements in the Axial Injection Torch
,”
Spectrochim. Acta, Part B
,
57
(
11
), pp.
1665
1680
.10.1016/S0584-8547(02)00087-3
39.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F.
,
Meeks
,
E.
,
Moffat
,
H. K.
, et al.,
2022
, “
Ansys Chemkin-Pro 2022 R1
,” Ansys, Canonsburg, PA.
40.
Wang
,
H.
,
You
,
X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” University of Southern California, Los Angeles, CA, accessed Aug. 2023, http://ignis.usc.edu/USC_Mech_II.htm
41.
Li
,
J.
,
Peluso
,
S.
, and
Santavicca
,
D.
,
2019
, “
Effect of a Premixed Pilot Flame on the Velocity-Forced Flame Response in a Lean-Premixed Swirl-Stabilized Combustor
,”
ASME
Paper No. GT2019-91577.10.1115/GT2019-91577
42.
Li
,
J.
,
Kwon
,
H.
,
Seksinsky
,
D.
,
Doleiden
,
D.
,
Xuan
,
Y.
,
O'Connor
,
J.
,
Akiki
,
M.
, and
Blust
,
J.
,
2022
, “
Describing the Mechanism of Instability Suppression Using a Central Pilot Flame With Coupled Experiments and Simulations
,”
ASME J. Eng. Gas Turbine Power
,
144
(
1
), p.
011015
.10.1115/1.4052384
43.
Guiberti
,
T. F.
,
Durox
,
D.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2015
, “
Analysis of Topology Transitions of Swirl Flames Interacting With the Combustor Side Wall
,”
Combust. Flame
,
162
(
11
), pp.
4342
4357
.10.1016/j.combustflame.2015.07.001
44.
O'Meara
,
B. C.
,
2015
, “
An Experimental Study of the Effect of a Pilot Flame on Technically Pre-Mixed, Self-Excited Combustion Instabilities
,”
Ph.D. thesis
,
Pennsylvania State University
, University Park, PA.https://ui.adsabs.harvard.edu/abs/2015PhDT........48O/abstract
45.
Doleiden
,
D.
,
2021
, “
Understanding the Limits of Combustion Instability Suppression Mechanisms
,”
Ph.D. thesis
,
Pennsylvania State University
, University Park, PA.https://etda.libraries.psu.edu/catalog/21587dgd5036
46.
Peluso
,
S.
,
2012
, “
An Experimental Study of Flame Response Mechanisms in a Lean-Premixed Gas Turbine Combustor
,”
Ph.D. thesis
,
Pennsylvania State University
, University Park, PA.https://etda.libraries.psu.edu/catalog/15453
47.
Li
,
J.
,
2019
, “
An Experimental Study of the Effect of a Pilot Flame on Combustion Instabilities
,”
Ph.D. thesis
,
Pennsylvania State University
, University Park, PA.https://www.proquest.com/openview/373390d0a8edbc03328a4099c98316da/1?pqorigsite=gscholar&cbl=18750&diss=y
48.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
182
189
.10.1115/1.1339002
You do not currently have access to this content.