Abstract

A considerable research effort has been concerned combustion dynamics of systems fed with hydrocarbon fuels. The case of pure hydrogen/air flames deserves to be specifically considered because hydrogen is highly reactive, has a tendency to develop thermo-diffusive instabilities, is envisaged in many future applications, most notably in gas turbines, and is less well documented. Thermo-acoustic instabilities of pure hydrogen flames are here investigated in a configuration where hydrogen is injected in-crossflow in a swirling stream of air. The study is focused on operating conditions that lead to oscillatory regimes. Using Abel-transformed phase-averaged images of OH* emission and visible light emission in burnt gases, it is shown that the OH* signal evolves approximately in phase with the heat release rate. This signal is then used to determine the local Rayleigh source term that feeds acoustic energy in the oscillation. The contributions of this term are examined using a space–time analysis based on an integration of the source term in the transverse direction. This procedure allows a detailed analysis of the processes that contribute to the acoustic energy in the system, showing, in particular, that a strong positive addition of acoustic energy results from a roll-up of the flame tip and from the quick cyclic back propagation of the flame to the injector tip. A global integration of the Rayleigh source term is then used together with a volume-integrated acoustic energy to estimate the growth rate associated with these driving processes and estimate the damping rate. A special experimental method is then exploited to determine the effective growth rate of the instability. The system allowing a sweep in frequency, self-sustained instabilities obtained at different frequencies are used to extract the specific instability frequency band of the burner. Finally, the flame is externally forced in order to measure its flame-describing function.

References

1.
Vaysse
,
N.
,
Durox
,
D.
,
Vicquelin
,
R.
,
Candel
,
S.
, and
Renaud
,
A.
, “
Stabilization and Dynamics of Pure Hydrogen Swirling Flames Using Cross-Flow Injection
,”
ASME
Paper No. GT2023-101977.10.1115/GT2023-101977
2.
Yahou
,
T.
,
Dawson
,
J. R.
, and
Schuller
,
T.
,
2022
, “
Impact of Chamber Back Pressure on the Ignition Dynamics of Hydrogen Enriched Premixed Flames
,”
Symp. Int. Combust.
, 39(4), pp.
4641
4650
.10.1016/j.proci.2022.07.236
3.
Aniello
,
A.
,
Poinsot
,
T.
,
Selle
,
L.
, and
Schuller
,
T.
,
2022
, “
Hydrogen Substitution of Natural-Gas in Premixed Burners and Implications for Blow-Off and Flashback Limits
,”
Int. J. Hydrogen Energy
,
47
(
77
), pp.
33067
33081
.10.1016/j.ijhydene.2022.07.066
4.
Pers
,
H.
,
Aniello
,
A.
,
Morisseau
,
F.
, and
Schuller
,
T.
,
2023
, “
Autoignition-Induced Flashback in Hydrogen-Enriched Laminar Premixed Burners
,”
Int. J. Hydrogen Energy
,
48
(
27
), pp.
10235
10249
.10.1016/j.ijhydene.2022.12.041
5.
Prieur
,
K.
,
Vignat
,
G.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2019
, “
Flame and Spray Dynamics During the Light-Round Process in an Annular System Equipped With Multiple Swirl Spray Injectors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p.
061007
.10.1115/1.4042024
6.
Töpperwien
,
K.
,
Collin-Bastiani
,
F.
,
Riber
,
E.
,
Cuenot
,
B.
,
Vignat
,
G.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
, and
Vicquelin
,
R.
,
2021
, “
Large-Eddy Simulation of Flame Dynamics During the Ignition of a Swirling Injector Unit and Comparison With Experiments
,”
ASME J. Eng. Gas Turbines Power
,
143
(
2
), p.
021015
.10.1115/1.4049297
7.
Schimek
,
S.
,
Göke
,
S.
,
Schrödinger
,
C.
, and
Paschereit
,
C. O.
,
2012
, “
Flame Transfer Function Measurements With CH4 and H2 Fuel Mixtures at Ultra Wet Conditions in a Swirl Stabilized Premixed Combustor
,”
ASME
Paper No. GT2012-69788.10.1115/GT2012-69788
8.
Shanbhogue
,
S. J.
,
Sanusi
,
Y. S.
,
Taamallah
,
S.
,
Habib
,
M. A.
,
Mokheimer
,
E. M. A.
, and
Ghoniem
,
A. F.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.10.1016/j.combustflame.2015.10.026
9.
Chterev
,
I.
, and
Boxx
,
I.
,
2021
, “
Effect of Hydrogen Enrichment on the Dynamics of a Lean Technically Premixed Elevated Pressure Flame
,”
Combust. Flame
,
225
, pp.
149
159
.10.1016/j.combustflame.2020.10.033
10.
Aguilar
,
J. G.
,
Æsøy
,
E.
, and
Dawson
,
J. R.
,
2022
, “
The Influence of Hydrogen on the Stability of a Perfectly Premixed Combustor
,”
Combust. Flame
,
245
, p.
112323
.10.1016/j.combustflame.2022.112323
11.
Kwak
,
S.
,
Choi
,
J.
,
Ahn
,
M.
, and
Yoon
,
Y.
,
2022
, “
Effects of Hydrogen Addition on the Forced Response of H2/CH4 Flames in a Dual-Nozzle Swirl-Stabilized Combustor
,”
Int. J. Hydrogen Energy
,
47
(
65
), pp.
28139
28151
.10.1016/j.ijhydene.2022.06.117
12.
Schuller
,
T.
,
Poinsot
,
T.
, and
Candel
,
S.
,
2020
, “
Dynamics and Control of Premixed Combustion Systems Based on Flame Transfer and Describing Functions
,”
J. Fluid Mech.
,
894
, p.
P1
.10.1017/jfm.2020.239
13.
Joo
,
S.
,
Kwak
,
S.
,
Lee
,
J.
, and
Yoon
,
Y.
,
2021
, “
Thermoacoustic Instability and Flame Transfer Function in a Lean Direct Injection Model Gas Turbine Combustor
,”
Aerosp. Sci. Technol.
,
116
, p.
106872
.10.1016/j.ast.2021.106872
14.
Æsøy
,
E.
,
Aguilar
,
J. G.
,
Wiseman
,
S.
,
Bothien
,
M. R.
,
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2020
, “
Scaling and Prediction of Transfer Functions in Lean Premixed H2/CH4-Flames
,”
Combust. Flame
,
215
, pp.
269
282
.10.1016/j.combustflame.2020.01.045
15.
Park
,
J.
, and
Lee
,
M. C.
,
2016
, “
Combustion Instability Characteristics of H2/CO/CH4 Syngases and Synthetic Natural Gases in a Partially-Premixed Gas Turbine Combustor: Part I—Frequency and Mode Analysis
,”
Int. J. Hydrogen Energy
,
41
(
18
), pp.
7484
7493
.10.1016/j.ijhydene.2016.02.047
16.
Yoon
,
J.
,
Joo
,
S.
,
Kim
,
J.
,
Lee
,
M. C.
,
Lee
,
J. G.
, and
Yoon
,
Y.
,
2017
, “
Effects of Convection Time on the High Harmonic Combustion Instability in a Partially Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3753
3761
.10.1016/j.proci.2016.06.105
17.
Lim
,
Z.
,
Li
,
J.
, and
Morgans
,
A. S.
,
2021
, “
The Effect of Hydrogen Enrichment on the Forced Response of CH4/H2/Air Laminar Flames
,”
Int. J. Hydrogen Energy
,
46
(
46
), pp.
23943
23953
.10.1016/j.ijhydene.2021.04.171
18.
Oztarlik
,
G.
,
Selle
,
L.
,
Poinsot
,
T.
, and
Schuller
,
T.
,
2020
, “
Suppression of Instabilities of Swirled Premixed Flames With Minimal Secondary Hydrogen Injection
,”
Combust. Flame
,
214
, pp.
266
276
.10.1016/j.combustflame.2019.12.032
19.
Ghani
,
A.
, and
Polifke
,
W.
,
2021
, “
Control of Intrinsic Thermoacoustic Instabilities Using Hydrogen Fuel
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6077
6084
.10.1016/j.proci.2020.06.151
20.
Barbosa
,
S.
,
de La Cruz Garcia
,
M.
,
Ducruix
,
S.
,
Labegorre
,
B.
, and
Lacas
,
F.
,
2007
, “
Control of Combustion Instabilities by Local Injection of Hydrogen
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3207
3214
.10.1016/j.proci.2006.07.085
21.
Nam
,
J.
, and
Yoh
,
J. J.
,
2020
, “
A Numerical Investigation of the Effects of Hydrogen Addition on Combustion Instability Inside a Partially-Premixed Swirl Combustor
,”
Appl. Therm. Eng.
,
176
, p.
115478
.10.1016/j.applthermaleng.2020.115478
22.
Poinsot
,
T. J.
,
Trouve
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
,
1987
, “
Vortex-Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
,
177
, pp.
265
292
.10.1017/S0022112087000958
23.
Kangkang
,
G.
,
Boqi
,
X.
,
Yongjie
,
R.
,
Yiheng
,
T.
, and
Wansheng
,
N.
,
2022
, “
Three-Dimensional Numerical Analysis of Longitudinal Thermoacoustic Instability in a Single-Element Rocket Combustor
,”
Front. Energy Res.
,
10
(
1
), p.
835977
.10.3389/fenrg.2022.835977
24.
Indlekofer
,
T.
,
Ahn
,
B.
,
Kwah
,
Y. H.
,
Wiseman
,
S.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2021
, “
The Effect of Hydrogen Addition on the Amplitude and Harmonic Response of Azimuthal Instabilities in a Pressurized Annular Combustor
,”
Combust. Flame
,
228
, pp.
375
387
.10.1016/j.combustflame.2021.02.015
25.
Zhang
,
J.
, and
Ratner
,
A.
,
2021
, “
Experimental Study of the Effects of Hydrogen Addition on the Thermoacoustic Instability in a Variable-Length Combustor
,”
Int. J. Hydrogen Energy
,
46
(
29
), pp.
16086
16100
.10.1016/j.ijhydene.2021.02.063
26.
Ahn
,
B.
,
Indlekofer
,
T.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2022
, “
Heat Release Rate Response of Azimuthal Thermoacoustic Instabilities in a Pressurized Annular Combustor With Methane/Hydrogen Flames
,”
Combust. Flame
,
244
, p.
112274
.10.1016/j.combustflame.2022.112274
27.
Moon
,
K.
,
Choi
,
Y.
, and
Kim
,
K. T.
,
2022
, “
Experimental Investigation of Lean-Premixed Hydrogen Combustion Instabilities in a Can-Annular Combustion System
,”
Combust. Flame
,
235
, p.
111697
.10.1016/j.combustflame.2021.111697
28.
Abbot
,
D.
,
Giannotta
,
A.
,
Sun
,
X.
,
Gauthier
,
P.
, and
Sethi
,
V.
,
2021
, “
Thermoacoustic Behaviour of a Hydrogen Micromix Aviation Gas Turbine Combustor Under Typical Flight Conditions
,”
ASME
Paper No. GT2021-59844.10.1115/GT2021-59844
29.
Kang
,
H.
, and
Kim
,
K. T.
,
2021
, “
Combustion Dynamics of Multi-Element Lean-Premixed Hydrogen-Air Flame Ensemble
,”
Combust. Flame
,
233
, p.
111585
.10.1016/j.combustflame.2021.111585
30.
Lee
,
T.
, and
Kim
,
K. T.
,
2022
, “
High-Frequency Transverse Combustion Instabilities of Lean-Premixed Multislit Hydrogen-Air Flames
,”
Combust. Flame
,
238
, p.
111899
.10.1016/j.combustflame.2021.111899
31.
Vaysse
,
N.
,
Durox
,
D.
,
Soundararajan
,
P.
,
Rajendram
,
Vicquelin
,
R.
,
Candel
,
S.
, and
Renaud
,
A.
,
2023
, “
Structure and Light Emission of Swirling Flames Produced by Pure Hydrogen Injection in Cross-Flow
,”
Proceedings European Combustion Meeting
, Rouen, France, Apr. 25–28.https://hal.science/hal-04564294v1/file/ECM_SICCA-H2_V4.pdf
32.
Karyeyen
,
S.
,
Feser
,
J. S.
, and
Gupta
,
A. K.
,
2019
, “
Hydrogen Concentration Effects on Swirl-Stabilized Oxy-Colorless Distributed Combustion
,”
Fuel
,
253
, pp.
772
780
.10.1016/j.fuel.2019.05.008
33.
Vignat
,
G.
,
2021
, “
Injection and Combustion Dynamics in Swirled Spray Flames and Azimuthal Coupling in Annular Combustors
,”
Ph.D. thesis
,
Université Paris-Saclay
, France.https://theses.hal.science/tel-03188392/
34.
Padley
,
P. J.
,
1960
, “
The Origin of the Blue Continuum in the Hydrogen Flame
,”
Trans. Faraday Soc.
,
56
, p.
449
.10.1039/tf9605600449
35.
Fiala
,
T.
, and
Sattelmayer
,
T.
,
2016
, “
Modeling of the Continuous (Blue) Radiation in Hydrogen Flames
,”
Int. J. Hydrogen Energy
,
41
(
2
), pp.
1293
1303
.10.1016/j.ijhydene.2015.10.045
36.
Durox
,
D.
,
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Morenton
,
P.
,
Viallon
,
M.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Flame Dynamics of a Variable Swirl Number System and Instability Control
,”
Combust. Flame
,
160
(
9
), pp.
1729
1742
.10.1016/j.combustflame.2013.03.004
37.
Rajendram Soundararajan
,
P.
,
Durox
,
D.
,
Renaud
,
A.
,
Vignat
,
G.
, and
Candel
,
S.
,
2022
, “
Swirler Effects on Combustion Instabilities Analyzed With Measured FDFs, Injector Impedances and Damping Rates
,”
Combust. Flame
,
238
, p.
111947
.10.1016/j.combustflame.2021.111947
38.
Durox
,
D.
,
Ducruix
,
S.
, and
Lacas
,
F.
,
1999
, “
Flow Seeding With an Air Nebulizer
,”
Exp. Fluids
,
27
(
5
), pp.
408
413
.10.1007/s003480050365
39.
Latour
,
V.
,
Durox
,
D.
,
Renaud
,
A.
, and
Candel
,
S.
,
2024
, “
Experiments on Symmetry Breaking of Azimuthal Combustion Instabilities and Their Analysis Combining Acoustic Energy Balance and Flame Describing Functions
,”
J. Fluid Mech.
,
985
, p.
A31
.10.1017/jfm.2024.307
You do not currently have access to this content.