Abstract

This paper was to present how an affordable, high-temperature, interlaminar tension (ILT) strength testing method was explored and developed for ceramic matrix composites (CMCs), leading to development of a diametral-compression test methodology. The test methodology was first delved and verified at ambient temperature by employing a model, 2D-woven polymer matrix composite (PMC) with various test-specimen configurations. The test method was then applied to and confirmed with two different gas-turbine grade CMCs of 2D melt-infiltrated (MI) SiC/SiC and 2D N720/alumina oxide/oxide at both ambient and elevated temperatures. Life prediction testing was also conducted at 1316 °C for the MI SiC/SiC to validate the effectiveness of test method for a long-term life prediction testing. All of the results on strength and life prediction testing indicated an applicability and feasibility as an appropriate high-temperature ILT test methodology in CMCs with provisions of simplicity, affordability, and technical soundness.

References

1.
Choi
,
S. R.
, and
Bansal
,
N. P.
,
2004
, “
Shear Strength as a Function of Test Rate for SiC/BSAS Ceramic Matrix Composite at Elevated Temperature
,”
J. Am. Ceram. Soc.
,
87
(
10
), pp.
1912
1918
.10.1111/j.1151-2916.2004.tb06340.x
2.
Choi
,
S. R.
, and
Bansal
,
N. P.
,
2005
, “
Interlaminar Tension/Shear Properties and Stress Rupture in Shear of Various Continuous Fiber-Reinforced Ceramic Matrix Composites
,”
Ceram. Trans.
,
175
, pp.
119
134
.https://www.researchgate.net/publication/285726398_Interlaminar_TensionShear_Properties_and_Stress_Rupture_in_Shear_of_Various_Continuous_Fiber-Reinforced_Ceramic_Matrix_Composites
3.
Choi
,
S. R.
,
Bansal
,
N. P.
,
Calomino
,
A. M.
, and
Verilli
,
M. J.
,
2004
, “
Shear Strength Behavior of Ceramic Matrix Composites at Elevated Temperatures
,”
Ceram. Trans.
,
165
, pp.
131
145
.10.1002/9781118408353.ch12
4.
Ruggles-Wrenn
,
M. B.
, and
Laffey
,
P. D.
,
2008
, “
Creep Behavior in Interlaminar Shear of Nextel 720/Alumina Ceramic Composite at Elevated Temperature in Air and in Steam
,”
Compos. Sci. Tech
nol.,
68
(
10–11
), pp.
2260
2266
.10.1016/j.compscitech.2008.04.009
5.
Choi
,
S. R.
, and
Kowalik
,
R. W.
,
2008
, “
Interlaminar Crack Growth Resistance of Various Ceramic Matrix Composites at Ambient Temperature
,”
ASME J. Eng. Gas Turbines Power
,
130
, p.
031301
.10.1115/1.2800349
6.
Choi
,
S. R.
,
Kowalik
,
R. W.
,
Alexander
,
D. J.
, and
Narottam
,
N. P.
,
2009
, “
Elevated-Temperature Stress Rupture in Interlaminar Shear of a Hi-Nic Si/SiC Ceramic Matrix Composite
,”
Compos. Sci. Tech
nol.,
69
(
7–8
), pp.
890
897
.10.1016/j.compscitech.2008.12.006
7.
Kane
,
S.
,
Stanley
,
A.
,
Sanchez
,
L.
,
Faucett
,
D. C.
, and
Choi
,
S. R.
,
2022
, “
Life Limiting Aspects of an MI SiC/SiC Ceramic Matrix Composite (CMC) in Interlaminar Shear at Elevated Temperature
,”
ASME J. Eng. Gas Turbines Power
,
144
, p.
021006
.10.1115/1.4052100
8.
Engel
,
T.
,
2013
, “
High-Temperature Interlaminar Tension Test Method Development for Ceramic Matrix Composites
,”
ASME
Paper No. GT2013-94095.10.1115/GT2013-94095
9.
Jones
,
E.
,
Jefferson
,
G.
,
Braginsky
,
M.
, and
Rooths
,
B.
,
2015
, “
Developing New Test Methods for CMCs Using Micro Digital Image Correlation (DIC)
,”
Presented at 39th Annual Conference on Composites, Materials, and Structures (Restricted Sessions)
, Cape Canaveral, FL, Jan.
26
29
.
10.
Weller
,
L.
,
Sullivan
,
B.
,
Cuneo
,
J.
, and
Koenig
,
J.
,
2015
, “
Optimization of C/SiC Interlaminar Tensile Test Specimen Designs at Room and Elevated Temperatures
,”
Presented at 39th Annual Conference on Composites, Materials, and Structures (Restricted Sessions)
, Cape Canaveral, FL, Jan.
26
29
.
11.
Kepley
,
L.
, and
Cain
,
A.
,
2015
, “
Development of Ceramic Cermet for a Standard Method of Measuring High-Temperature Interlaminar Tensile Strength
,”
Presented at 39th Annual Conference on Composites, Materials, and Structures
(Restricted Sessions), Cocoa Beach, FL, Jan.
26
29
.
12.
ASTM International
,
2023
, “Test Method for Shear Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperatures,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM C1292.
13.
ASTM International
,
2023
, “Test Method for Interlaminar Shear Strength of 1D and 2D Continuous Fiber-Reinforced Advanced Ceramics at Elevated Temperatures,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM C1425.
14.
ASTM International
,
2023
, “Test Method for Transthickness Tensile Strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperature,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM C1468.
15.
Hertz
,
H.
,
1896
, “
On the Distribution of Stress in an Elastic Circular Cylinder
,”
The Miscellaneous Papers
,
P.
Lenard
,
ed.
,
Macmillan
,
London
, UK, pp.
261
265
.
16.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
,
McGraw-Hill
,
New York
, pp.
122
127
.
17.
Nordan
,
B. N.
,
1973
, “
On the Compression of a Cylinder in Contact With a Plane Surface
,”
National Bureau of Standards
,
Washington, DC
, Report No. NBS IR
73
243
.
18.
Dally
,
J. W.
, and
Riley
,
W. F.
,
1991
,
Experimental Stress Analysis
,
McGraw-Hill
,
New York
, Chap.
13
.
19.
Procopio
,
A. T.
,
Zavaliangos
,
A.
, and
Cunningham
,
J. C.
,
2003
, “
Analysis of the Diametral Compression Test and the Applicability to Plastically Deforming Materials
,”
J. Mater. Sci.
,
38
, pp.
3629
3639
.10.1023/A:1025681432260
20.
Jadaan
,
O. M.
, and
Wereszczak
,
A. W.
,
2009
, “
Effective Size Analysis of the Diametral Compression (Brazil) Test Specimens
,”
Oak Ridge National Laboratory
,
Oak Ridge, TN
, Report No. ORNL-TM-2009/100.
21.
Marion
,
R. H.
, and
Johnstone
,
J. K.
,
1977
, “
A Parametric Study of the Diametral Compression Test for Ceramics
,”
Am. Ceram. Soc. Bull.
,
56
(
11
), pp.
998
1002
.https://www.osti.gov/biblio/6343553
22.
Shetty
,
D. K.
,
Rosenfield
,
A. R.
, and
Duckworth
,
W. H.
,
1986
, “
Mixed-Mode Fracture of Ceramics in Diametral Compression
,”
J. Am. Ceram. Soc.
,
69
(
6
), pp.
437
443
.10.1111/j.1151-2916.1986.tb07441.x
23.
Ovri
,
J. E.
, and
Davies
,
T. J.
,
1987
, “
Diametral Compression of Silicon Nitride
,”
Mater. Sci. Eng.
,
96
, pp.
109
116
.10.1016/0025-5416(87)90545-3
24.
Pastor
,
J. Y.
,
Poza
,
P.
, and
LLorca
,
J.
,
1999
, “
Mechanical Properties of Textured Bi2Sr2CaCu2O8+δ High-Temperature Superconductors
,”
J. Am. Ceram. Soc.
,
82
(
11
), pp.
3139
3144
.10.1111/j.1151-2916.1999.tb02214.x
25.
Swab
,
J. J.
,
Yu
,
J.
,
Gamble
,
R.
, and
Kilczewski
,
S.
,
2011
, “
Analysis of the Diametral Compression Method for Determining the Tensile Strength of Transparent Magnesium Aluminate Spinel
,”
Int. J. Fract.
,
172
(
2
), pp.
187
192
.10.1007/s10704-011-9655-1
26.
Hadley
,
D. W.
,
Pinnock
,
P. R.
, and
Ward
,
I. M.
,
1969
, “
Anisotropy in Oriented Fibers From Synthetic Polymers
,”
J. Mater. Sci.
,
4
(
2
), pp.
152
165
.10.1007/BF00550656
27.
Jawad
,
S. A.
, and
Ward
,
I. M.
,
1978
, “
The Transverse Compression of Oriented Nylon and Polyethylene Extrudates
,”
J. Mater. Sci.
,
13
(
7
), pp.
1381
1387
.10.1007/BF00553190
28.
Mao
,
T. H.
, and
Owen
,
M. J.
,
1982
, “
Through-the-Thickness Tensile Strength of Fiber-Reinforced Plastics
,”
Composite Materials: Testing and Design (6th Conference)
, STP 787, ASTM International, Phoenix, AZ, May 12–13, pp.
5
18
.10.1520/ST P28470S
29.
Kar
,
N. K.
,
Hu
,
Y.
,
Ahn
,
B.
, and
Nutt
,
S. R.
,
2012
, “
Diametral Compression of Pultruded Composite Rods
,”
Compos. Sci. Technol.
,
72
(
11
), pp.
1283
1290
.10.1016/j.compscitech.2012.05.001
30.
Hinoki
,
T.
,
Lara-Curzio
,
E.
, and
Snead
,
L. L.
,
2003
, “
Evaluation of Transthickness Tensile Strength of SiC/SiC Composites
,”
Ceram. Eng. Sci. Proc.
,
24
(
4
), pp.
401
406
.10.1002/SERIES2122
31.
ASTM International
,
2016
, “
Standard Method for Splitting Tensile Strength of Intact Rock Core Specimens, Annual Book of ASTM Standards
,”
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM D3967-16.
32.
Hudson, J. A., Brown, E. T., and Rummel, F., 1972, “The Controlled Failure of Rock Discs and Rings Loaded in Diametral Compression,”
Int. J. Rock Mech. Mining Sci. Geomech. Abstr.
,
9
(2), pp. 241–248.10.1016/0148-9062(72)90025-3
33.
Fairhurst
,
C.
,
1964
, “
On the Validity of the ‘Brazilian’ Test for Brittle Materials
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
1
(
4
), pp.
535
546
.10.1016/0148-9062(64)90060-9
34.
Yohannes
,
B.
, and
Abebe
,
A.
,
2021
, “
Determination of Tensile Strength of Shaped Tablets
,”
Powder Technol.
,
383
, pp.
11
18
.10.1016/j.powtec.2021.01.014
35.
Newton
,
J.
, and
Fell
,
J.
,
1970
, “
Determination of Tablet Strength by the Diametral-Compression Test
,”
J. Pharm. Sci.
,
59
(
5
), pp.
688
691
.10.1002/jps.2600590523
36.
Podczeck
,
F.
,
Drake
,
K. R.
, and
Newton
,
J. M.
,
2013
, “
Investigations Into the Tensile Failure of Doubly-Convex Cylindrical Tablets Under Diametral Loading Using Finite Element Methodology
,”
Int. J. Pharm.
,
454
(
1
), pp.
412
424
.10.1016/j.ijpharm.2013.06.069
37.
Koplin
,
C.
,
Rodriguez
,
G. V.
, and
Jaeger
,
R.
,
2014
, “
Multiaxial Strength and Stress Forming Behavior of Four Light-Curable Dental Composites
,”
J. Res. Pract. Dent.
,
2014
, pp.
1
14
.10.5171/2014.396766
38.
Williams
,
P. D.
, and
Smith
,
D. C.
,
1971
, “
Measurement of the Tensile Strength of Dental Restorative Materials by Use of a Diametral Compression Test
,”
J. Dent. Res.
,
50
(
2
), pp.
436
442
.10.1177/00220345710500025401
39.
Levartovsky
,
S.
,
Kuyinu
,
E.
,
Georgescu
,
M.
, and
Goldstein
,
G. R.
,
1994
, “
A Comparison of the Diametral Tensile Strength, the Flexural Strength, and the Compressive Strength of Two New Core Materials to a Silver Alloy-Reinforced Glass-Ionomer Material
,”
J. Prosthet. Dent.
,
72
(
5
), pp.
481
485
.10.1016/0022-3913(94)90118-X
40.
Choi
,
S. R.
, and
Gyekenyesi
,
G. P.
,
1999
, “
Slow Crack Growth Analysis of Brittle Materials With Finite Thickness Subjected to Constant Stress-Rate Flexural Loading
,”
J. Mater. Sci.
,
34
, pp.
3875
3882
.10.1023/A:1004618722388
41.
ASTM International
,
2023
, “
Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Ambient Temperatures
,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM C1368.
42.
ASTM International
,
2023
, “Standard Test Method for Determination of Slow Crack Growth Parameters of Advanced Ceramics by Constant Stress-Rate Flexural Testing at Elevated Temperatures,”
Annual Book of ASTM Standards
,
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM C1465.
43.
Bansal
,
N. P.
, ed.,
2005
,
Handbook of Ceramic Composites
,
Kluwer Academic Publisher
,
Boston, MA
, Chap.
5
.
44.
Choi
,
S. R.
,
Faucett
,
D. C.
, and
Alexander
,
D. J.
,
2014
, “
Foreign Object Damage by Spherical Steel Projectiles in an N720/Alumina Oxide/Oxide Ceramic Matrix Composite
,”
J. Am. Ceram. Soc.
,
97
(
12
), pp.
3926
3934
.10.1111/jace.13197
45.
Choi
,
S. R.
,
Salem
,
J. A.
, and Nemeth, N. N.,
1998
, “
High-Temperature Slow Crack Growth of Silicon Carbide Determined by Constant-Stress-Rate and Constant-Stress Testing
,”
J. Mater. Sci.
,
33
(
5
), pp.
1325
1332
.10.1023/A:1004358516776
46.
Newton
,
C. D.
,
Jeffs
,
S. P.
,
Gale
,
L.
,
Pattison
,
S.
, and
Bache
,
M. R.
,
2023
, “
Determining the Interlaminar Tensile Strength of a SiCf/SiC Ceramic Matrix Composite Through Diametrical Compression Testing
,”
J. Eur. Ceram. Soc.
,
43
(
7
), pp.
2951
2957
.10.1016/j.jeurceramsoc.2022.11.014
You do not currently have access to this content.