Abstract

Swirling jets are canonical flow fields used to stabilize flames in many gas-turbine combustion systems. These flows amplify background acoustic disturbances and perturb the flame, producing combustion noise and potentially combustion instabilities. Hydrodynamic flow response to acoustic excitations in reacting flows is an important modeling task for understanding combustion noise and combustion instabilities. This study utilizes a global hydrodynamic stability analysis in a biglobal and triglobal framework to model the vortical hydrodynamic modes of a reacting, swirling large eddy simulations (LES) mean-flow based on a commercial nozzle. After conducting an unforced, natural biglobal stability analysis to study the unstable eigenmodes of the flow, linearized equations of motion are used to study flow response of the flow to forcing. An empirical velocity transfer function is constructed by determining the flow response to a harmonically varying 1501500 Hz u velocity disturbance at the inflow boundary. These disturbances are strongly amplified, with amplification factors ranging from about 20 to 50 and peaking at about 1050 Hz, or St=0.375. A comparison study with a Cartesian, three-dimensional (3D) reacting base-flow is also performed where the base-flow varies spatially in three-dimensions. The study utilizes a stable, high accuracy, but computationally effective centered finite difference scheme based on a three-dimensional structured mesh. Illustrative results present the qualitative modes and quantitative transfer functions for Biglobal and Triglobal stability analyses.

References

1.
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2016
, “
Coherent Structures in a Swirl Injector at Re = 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.10.1017/jfm.2016.86
2.
Douglas
,
C. M.
,
Emerson
,
B. L.
, and
Lieuwen
,
T. C.
,
2021
, “
Nonlinear Dynamics of Fully Developed Swirling Jets
,”
J. Fluid Mech.
,
924
, p.
A14
.10.1017/jfm.2021.615
3.
Karmarkar
,
A.
,
Gupta
,
S.
,
Boxx
,
I.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2022
, “
Impact of Precessing Vortex Core Dynamics on the Thermoacoustic Instabilities in a Swirl-Stabilized Combustor
,”
J. Fluid Mech.
,
946
, p.
A36
.10.1017/jfm.2022.610
4.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.10.1017/jfm.2011.141
5.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.10.1016/j.combustflame.2015.02.015
6.
Manoharan
,
K.
,
Smith
,
T.
,
Emerson
,
B.
,
Douglas
,
C. M.
,
Lieuwen
,
T.
, and
Hemchandra
,
S.
,
2017
, “
Velocity Field Response of a Forced Swirl Stabilized Premixed Flame
,”
ASME
Paper No. GT2017-63936.10.1115/GT2017-63936
7.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
, Cambridge, UK.
8.
Manoharan
,
K.
,
Frederick
,
M.
,
Clees
,
S.
,
O'Connor
,
J.
, and
Hemchandra
,
S.
,
2020
, “
A Weakly Nonlinear Analysis of the Precessing Vortex Core Oscillation in a Variable Swirl Turbulent Round Jet
,”
J. Fluid Mech.
,
884
, p.
A29
.10.1017/jfm.2019.903
9.
Panchal
,
A.
, and
Menon
,
S.
,
2023
, “
Large Eddy Simulation of Combustion Noise in a Realistic Gas Turbine Combustor
,”
AIAA
Paper No. 2023-1349.10.2514/6.2023-1349
10.
Patel
,
S. J.
,
Ha
,
S.
,
Nair
,
V.
,
Adhikari
,
S.
,
Wu
,
D.
,
Emerson
,
B. L.
,
Steinberg
,
A. M.
, and
Lieuwen
,
T. C.
,
2023
, “
Development of a Pressurized, Liquid-Fueled Combustor for Noise Measurements
,”
AIAA
Paper No. 2023-1348.10.2514/6.2023-1348
11.
Luo
,
K. H.
, and
Sandham
,
N. D.
,
1997
, “
Instability of Vortical and Acoustic Modes in Supersonic Round Jets
,”
Phys. Fluids
,
9
(
4
), pp.
1003
1013
.10.1063/1.869196
12.
O'Connor
,
J.
, and
Lieuwen
,
T. C.
,
2012
, “
Further Characterization of the Disturbance Field in a Transversely Excited Swirl-Stabilized Flame
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011501
.10.1115/1.4004186
13.
Vasconcellos
,
B.
,
Martini
,
E.
,
Jaunet
,
V.
,
Foucault
,
E.
, and
Jordan
,
P.
,
2023
, “
Local Stability Analysis of Annular Swirling Jets
,”
AIAA
Paper No. 2023-3569.10.2514/6.2023-3569
14.
Mistry
,
D.
,
Qadri
,
U. A.
, and
Juniper
,
M.
,
2011
, “
Local Stability Analysis of Swirling Shear Flows
,”.https://elib.dlr.de/74232/1/epfdc5bookOfAbstracts.pdf#page=53
15.
Ohmichi
,
Y.
, and
Yamada
,
K.
,
2021
, “
Matrix-Free TriGlobal Adjoint Stability Analysis of Compressible Navier–Stokes Equations
,”
J. Comput. Phys.
,
437
, p.
110332
.10.1016/j.jcp.2021.110332
16.
Morzyński
,
M.
, and
Thiele
,
F.
,
2008
, “
3D Global Flow Stability Analysis on Unstructured Grids
,” R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, eds.,
Parallel Processing and Applied Mathematics, PPAM 2007, Lecture Notes in Computer Science
, Vol. 4967, Springer, Berlin, Heidelberg, pp.
1293
1302
.10.1007/978-3-540-68111-3_137
17.
Paredes
,
P.
,
Theofilis
,
V.
,
Rodriguez
,
D.
, and
Tendero
,
J.
,
2011
, “
The PSE-3D Instability Analysis Methodology for Flows Depending Strongly on Two and Weakly on the Third Spatial Dimension
,”
AIAA
Paper No. 2011-3752.10.2514/6.2011-3752
18.
Polifke
,
W.
,
Poncet
,
A.
,
Paschereit
,
C.
, and
Dobbeling
,
K.
,
2001
, “
Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics
,”
J. Sound Vib.
,
245
(
3
), pp.
483
510
.10.1006/jsvi.2001.3594
19.
Vanierschot
,
M.
,
Müller
,
J. S.
,
Sieber
,
M.
,
Percin
,
M.
,
Van Oudheusden
,
B. W.
, and
Oberleithner
,
K.
,
2020
, “
Single- and Double-Helix Vortex Breakdown as Two Dominant Global Modes in Turbulent Swirling Jet Flow
,”
J. Fluid Mech.
,
883
, p.
A31
.10.1017/jfm.2019.872
20.
Pant
,
C. S.
, and
Bhattacharya
,
A.
,
2016
, “
A Viscous Sponge Layer Formulation for Robust Large Eddy Simulation of Thermal Plumes
,”
Comput. Fluids
,
134–135
, pp.
177
189
.10.1016/j.compfluid.2016.05.019
21.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C.
,
2015
, “
Key Parameters Governing the Precessing Vortex Core in Reacting Flows: An Experimental and Analytical Study
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3347
3354
.10.1016/j.proci.2014.07.035
22.
Sipp
,
D.
, and
Lebedev
,
A.
,
2007
, “
Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows
,”
J. Fluid Mech.
,
593
, pp.
333
358
.10.1017/S0022112007008907
You do not currently have access to this content.