Abstract

Gap shape is an important factor affecting the tandem cascade performance. This paper uses the gap expansion angle (Kbb) to define gap shape and studies the effect of Kbb on the two-dimensional flow field and flow characteristic near the endwall in a highly-loaded subsonic tandem cascade. By changing the incidence angle from −20 to 10°, the Kbb value increases, and the two-dimensional tandem cascade performance improves at positive incidence angles, while it descends at zero and negative incidence angles. Due to the influence of Kbb on the camber of front and rear blades (RB), the optimal Kbb should provide appropriate load distribution and sufficient gap flow strength. The corner stall more likely appears on the front blade near the endwall, which can suppress the flow separation on the rear blade to a certain extent. The Kbb value near the endwall should be slightly larger than in the midspan to ensure a sufficient operating range for the front blade. For a highly loaded subsonic tandem cascade, the overall optimal range of Kbb is between −12 and 0°.

References

1.
Mcglumphy
,
J.
,
Ng
,
W. F.
,
Wellborn
,
S. R.
, and
Kempf
,
S.
,
2010
, “
3D Numerical Investigation of Tandem Airfoils for a Core Compressor Rotor
,”
ASME J. Turbomach.
,
132
(
3
), p.
031009
.10.1115/1.3149283
2.
Bammert
,
K.
, and
Beelte
,
H.
,
1980
, “
Investigations of an Axial Flow Compressor With Tandem Cascades
,”
ASME J. Eng. Power
,
102
(
4
), pp.
971
977
.10.1115/1.3230369
3.
Zhang
,
L. X.
,
Du
,
X.
,
Liu
,
X.
,
Wang
,
Y. F.
, and
Wang
,
S. T.
,
2016
, “
On the Airfoil Construction Method for the Outlet Vane in a Multi-Stage Aspirated Compressor
,”
J. Eng. Thermophys.
,
37
(
3
), pp.
488
493
.
4.
Liu
,
B. J.
,
Zhang
,
C.
,
An
,
G. F.
,
Fu
,
D.
, and
Yu
,
X. J.
,
2022
, “
Using Tandem Blades to Break Loading Limit of Highly Loaded Axial Compressors
,”
Chin. J. Aeronaut.
,
35
(
4
), pp.
165
175
.10.1016/j.cja.2021.07.031
5.
Hergt
,
A.
, and
Siller
,
U.
,
2016
, “
About Subsonic Compressor Tandem Aerodynamics-A Fundamental Study
,” 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, Apr. 10–15, Paper No.
HAL-01884245
.https://core.ac.uk/download/pdf/77229711.pdf
6.
Mp
,
M.
, and
Shine
,
S. R.
,
2022
, “
Characterization of Tandem Airfoil Configurations of Axial Compressors
,”
Int. J. Turbo Jet Engines
,
39
(
2
), pp.
167
181
.10.1515/tjj-2018-0018
7.
Ghazanfari
,
B.
,
Nili-Ahmadabadi
,
M.
,
Torabi-Farsani
,
A.
, and
Noorsalehi
,
M. H.
,
2018
, “
Numerical Study of Camber and Stagger Angle Effects on the Aerodynamic Performance of Tandem-Blade Cascades
,”
Propul. Power Res.
,
7
(
1
), pp.
30
42
.10.1016/j.jppr.2018.02.003
8.
Mp
,
M.
, and
Shine
,
S. R.
,
2015
, “
Numerical Investigation on Tandem Compressor Cascades
,”
ASME
Paper No. GTINDIA2015-1311. 10.1115/GTINDIA2015-1311
9.
Kumar
,
A.
, and
Pradeep
,
A. M.
,
2021
, “
Design Methodology of a Highly Loaded Tandem Rotor and Its Performance Analysis Under Clean and Distorted Inflows
,”
Proc. Inst. Mech. Eng., Part C
,
235
(
23
), pp.
6798
6821
.10.1177/09544062211016021
10.
Sun
,
S. J.
,
Hao
,
J. Q.
,
Yang
,
J. T.
,
Zhou
,
L.
, and
Ji
,
L. C.
,
2022
, “
Impacts of Tandem Configurations on the Aerodynamic Performance of an Axial Supersonic Through-Flow Fan Cascade
,”
ASME J. Turbomach.
,
144
(
4
), pp.
041009.1
041009.14
.10.1115/1.4052689
11.
Wang
,
P.
,
Wang
,
Q.
,
Gan
,
P.
, and
Zhou
,
Z. P.
,
2011
, “
Exploratory Study of Design Technologies for High-Load Pressure Diffusion Tandem Rotors
,”
J. Eng. Therm. Energy Power
,
26
(
4
), pp.
388
392
.
12.
Schneider
,
T.
, and
Kožulović
,
D.
,
2013
, “
Flow Characteristics of Axial Compressor Tandem Cascades at Large Off-Design Incidence Angles
,”
ASME
Paper No. GT2013-94708. 10.1115/GT2013-94708
13.
Liu
,
H. R.
,
Yue
,
S. Y.
,
Wang
,
Y. G.
, and
Zhang
,
J.
,
2018
, “
Investigation for Effects of Slot Jet of Tandem Cascade on Separation Flow and Cascade Performance
,”
J. Propul. Technol.
,
39
(
12
), pp.
2728
2736
.
14.
Cheng
,
H.
,
Liu
,
B.
,
Li
,
J.
, and
Yang
,
X. D.
,
2017
, “
A Study of Parameter Optimization of Axial Compressor Tandem Cascade
,”
J. Propul. Technol.
,
38
(
10
), pp.
2224
2234
.
15.
Wang
,
Y. G.
,
Wei
,
L.
, and
Chen
,
W. X.
,
2014
, “
Optimization and Numerical Simulation of High-Turning Tandem Cascade
,”
J. Propul. Technol.
,
35
(
11
), pp.
1469
1474
.10.13675/j.cnki.tjjs.2014.11.005
16.
Ju
,
Y. P.
, and
Zhang
,
C. H.
,
2010
, “
Multi-Objective Optimization Design Method for Tandem Compressor Cascade at Design and Off Design Conditions
,”
ASME
Paper No. GT2010-22655. 10.1115/GT2010-22655
17.
Böhle
,
M.
, and
Frey
,
T.
,
2014
, “
Numerical and Experimental Investigations of the Three-Dimensional-Flow Structure of Tandem Cascades in the Sidewall Region
,”
ASME J. Fluids Eng.
,
136
(
7
), p.
071102
.10.1115/1.4026880
18.
Frey
,
T.
, and
Böhle
,
M.
,
2013
, “
Flow Structure of Tandem Cascades in the Region of the Sidewalls
,”
ASME
Paper No. FEDSM2013-16034. 10.1115/FEDSM2013-16034
19.
Hertel
,
C.
,
Bode
,
C.
,
Kožulović
,
D.
, and
Schneider
,
T.
,
2014
, “
Investigations on Aerodynamic Loading Limits of Subsonic Compressor Tandem Cascades: End Wall Flow
,”
ASME
Paper No. GT2014-26978. 10.1115/GT2014-26978
20.
McNally
,
W. D.
, and
Crouse
,
J. E.
,
1970
, “
FORTRAN Program for Computing Coordinates of Circular Arc Single and Tandem Turbomachinery Blade Sections on a Plane
,” NASA, Washington, DC, Report No.
NASA-TN-D-6020
.https://ntrs.nasa.gov/api/citations/19710000937/downloads/19710000937.pdf
You do not currently have access to this content.