Abstract

This study investigates turbine rim seal geometry effects within the rotationally-driven ingestion regime. Computations were performed with a wall-resolved unsteady Reynolds-averaged Navier–Stokes (URANS) model and a large-eddy simulation (LES) model including near-wall boundary layer modeling, that is, wall-modeled LES (WMLES). Use of simplified rim sealing models is proposed as an efficient method of ranking seal designs and investigating sensitivity to seal geometry. Four rim seal configurations, two chute seals, an axial seal and a radial seal which are representative of those used in gas turbines and in previous research were investigated. Furthermore, hybrid seals combining geometric characteristics from both the chute and radial seal were considered. Significant sensitivities of sealing performance to turbulence modeling are identified, but URANS and WMLES show similar trends in ranking of seal performance, and these are consistent with previous experimental work. The addition of an outer radial clearance section to a chute seal is effective in reducing ingestion levels.

References

1.
Diakunchak
,
I.
,
Kiesow
,
H. J.
, and
McQuiggan
,
G.
,
2008
, “
The History of the Siemens Gas Turbine
,”
ASME
Paper No. GT2008-50507. 10.1115/GT2008-50507
2.
Hunt
,
R. J.
,
2011
,
The History of the Industrial Gas Turbine (Part 1 the First Fifty Years 1940–1990)
,
Power Engineer
, Bedford, UK.
3.
Kyprianidis
,
K. G.
,
2011
,
Future Aero Engine Designs: An Evolving Vision
,
InTech
, London, UK.
4.
Clarke
,
D. R.
,
Oechsner
,
M.
, and
Padture
,
N. P.
,
2012
, “
Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines
,”
MRS Bull.
,
37
(
10
), pp.
891
898
.10.1557/mrs.2012.232
5.
Johnson
,
B. V.
,
Mack
,
G. J.
,
Paolillo
,
R. E.
, and
Daniels
,
W. A.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
AIAA
Paper No. 94-2703. 10.2514/6.94-2703
6.
Bayley
,
F. J.
, and
Owen
,
J. M.
,
1970
, “
The Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant
,”
ASME J. Eng. Power
,
92
(
3
), pp.
335
341
.10.1115/1.3445358
7.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1983
, “
An Investigation of Ingress for an “Air-Cooled” Shrouded Rotating Disk System With Radial-Clearance Seals
,”
ASME J. Eng. Power
,
105
(
1
), pp.
178
182
.10.1115/1.3227382
8.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.10.1016/0142-727X(88)90060-4
9.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.10.1016/0142-727X(88)90062-8
10.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor-Stator Systems: Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.10.1016/0142-727X(88)90061-6
11.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.10.1115/1.2928368
12.
Gentilhomme
,
O.
,
Hills
,
N. J.
,
Turner
,
A. B.
, and
Chew
,
J. W.
,
2003
, “
Measurement and Analysis of Ingestion Through a Turbine Rim Seal
,”
ASME J. Turbomach.
,
125
(
3
), pp.
505
512
.10.1115/1.1556411
13.
Bohn
,
D.
,
Johann
,
E.
, and
Krüger
,
U.
,
1995
, “
Experimental and Numerical Investigations of Aerodynamic Aspects of Hot Gas Ingestion in Rotor-Stator Systems With Superimposed Cooling Mass Flow
,”
ASME
Paper No. 95-GT-143. 10.1115/95-GT-143
14.
Bohn
,
D.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
1999
, “
Influence of Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 99-GT-248. 10.1115/99-GT-248
15.
Bohn
,
D.
,
Rudzinski
,
B.
,
Sürken
,
N.
, and
Gärtner
,
W.
,
2000
, “
Experimental and Numerical Investigation of the Influence of Rotor Blades on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage
,”
ASME
Paper No. 2000-GT-0284.10.1115/2000-GT-0284
16.
Bohn
,
D.
, and
Wolff
,
M.
,
2003
, “
Improved Formulation to Determine Minimum Sealing Flow– cw,min–for Different Sealing Configurations
,”
ASME
Paper No. GT2003-38465. 10.1115/GT2003-38465
17.
Bohn
,
D. E.
,
Decker
,
A.
,
Ohlendorf
,
N.
, and
Jakoby
,
R.
,
2006
, “
Influence of an Axial and Radial Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2006-90453. 10.1115/GT2006-90453
18.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C.-Z.
, and
Glahn
,
J. A.
,
2011
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
031023
.10.1115/1.4002423
19.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals-Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.10.1115/1.4006609
20.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie, J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals-Part III: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.10.1115/1.4007504
21.
Sangan
,
C. M.
,
Scobie
,
J. A.
,
Owen
,
J. M.
,
Lock
,
G. D.
,
Tham
,
K. M.
, and
Laurello
,
V. P.
,
2014
, “
Performance of a Finned Turbine Rim Seal
,”
ASME J. Turbomach.
,
136
(
11
), p.
111008
.10.1115/1.4028116
22.
Scobie
,
J. A.
,
Teuber
,
R.
,
Li
,
Y. S.
,
Sangan
,
C. M.
,
Wilson
,
M.
, and
Lock
,
G. D.
,
2016
, “
Design of an Improved Turbine Rim-Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022503
.10.1115/1.4031241
23.
Horwood
,
J. T. M.
,
Hualca
,
F. P.
,
Wilson
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Lock
,
G. D.
,
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2020
, “
Flow Instabilities in Gas Turbine Chute Seals
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021019
.10.1115/1.4045148
24.
Savov
,
S. S.
,
Atkins
,
N. R.
, and
Uchida
,
S.
,
2017
, “
A Comparison of Single and Double Lip Rim Seal Geometries
,”
ASME J. Eng. Gas Turbines Power
,
139
(
11
), p.
112601
.10.1115/1.4037027
25.
Graber
,
D. J.
,
Daneils
,
W. A.
, and
Johnson
,
B. V.
,
1987
, “
Disk Pumping Test
,”
Pratt and Whitney, Government Products Division, West Palm Beach, FL
, Technical Report No. AFWAL-TR-87-2050.
26.
Daniels
,
W. A.
,
Johnson
,
B. V.
,
Graber
,
D. J.
, and
Martin
,
R. J.
,
1992
, “
Rim Seal Experiments and Analysis for Turbine Applications
,”
ASME J. Turbomach.
,
114
(
2
), pp.
426
432
.10.1115/1.2929161
27.
Bru Revert
,
A.
,
Beard
,
P. F.
,
Chew
,
J. W.
, and
Bottenheim
,
S.
,
2021
, “
Performance of a Turbine Rim Seal Subject to Rotationally-Driven and Pressure-Driven Ingestion
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081025
.10.1115/1.4049858
28.
Chew
,
J. W.
,
Gao
,
F.
, and
Palermo
,
D. M.
,
2019
, “
Flow Mechanisms in Axial Turbine Rim Sealing
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
23–24
), pp.
7637
7657
.10.1177/0954406218784612
29.
Burden
,
S.
,
Chew
,
J. W.
,
Gao
,
F.
, and
Marxen
,
O.
,
2022
, “
Effects of Turbine Conditions on Rim Seal Performance and Prediction
,”
ASME
Paper No. GT2022-83194. 10.1115/GT2022-83194
30.
Palermo
,
D. M.
,
Gao
,
F.
,
Amirante
,
D.
,
Chew
,
J. W.
,
Bru Revert
,
A.
, and
Beard
,
P. F.
,
2021
, “
Wall-Modeled Large Eddy Simulations of Axial Turbine Rim Sealing
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061025
.10.1115/1.4049487
31.
Xie
,
L.
,
Du
,
Q.
,
Liu
,
G.
,
Lian
,
Z.
,
Xie
,
Y.
, and
Luo
,
Y.
,
2023
, “
Investigation of Flow Characteristics in a Rotor-Stator Cavity Under Crossflow Using Wall-Modelled Large-Eddy Simulation
,”
J. Zhejiang Univ., Sci., A
,
24
(
6
), pp.
473
496
.10.1631/jzus.A2200565
32.
Beard
,
P. F.
,
Gao
,
F.
,
Chana
,
K. S.
, and
Chew
,
J. W.
,
2017
, “
Unsteady Flow Phenomena in Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032501
.10.1115/1.4034452
33.
Moin
,
P.
, and
Kim
,
J.
,
1982
, “
Numerical Investigation of Turbulent Channel Flow
,”
J. Fluid Mech.
,
118
, pp.
341
377
.10.1017/S0022112082001116
34.
Reichardt
,
H.
,
1951
, “
Complete Representation of the Turbulent Velocity Distribution in Smooth Pipe
,”
Z. Angew. Math.
,
31
(
7
), pp.
208
219
.10.1002/zamm.19510310704
35.
Hösgen
,
T.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2020
, “
Large-Eddy Simulations of Rim Seal Flow in a One-Stage Axial Turbine
,”
J. Global Power Propul. Soc.
,
4
, pp.
309
321
.10.33737/jgpps/129704
36.
Pehle
,
L.
,
Schwertner
,
S.
, and
Wirsum
,
M.
,
2022
, “
Model Setup for the Investigation of Flow Phenomena in a 1.5-Stage Gas Turbine Regarding Hot Gas Ingestion
,”
ASME
Paper No. GT2022-81947. 10.1115/GT2022-81947
37.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large-Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.10.1016/j.ijheatfluidflow.2006.02.006
38.
Gao
,
F.
,
Chew
,
J. W.
,
Beard
,
P. F.
,
Amirante
,
D.
, and
Hills
,
N. J.
,
2018
, “
Large-Eddy Simulation of Unsteady Turbine Rim Sealing Flows
,”
Int. J. Heat Fluid Flow
,
70
, pp.
160
170
.10.1016/j.ijheatfluidflow.2018.02.002
39.
Graikos
,
D.
,
Tang
,
H.
,
Sangan
,
C. M.
,
Lock
,
G. D.
, and
Scobie
,
J. A.
,
2022
, “
A New Interpretation of Hot Gas Ingress Through Turbine Rim Seals Influenced by Mainstream Annulus Swirl
,”
ASME J. Eng. Gas Turbines Power
,
144
(
11
), p.
111005
.10.1115/1.4055457
40.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.10.1115/1.4033938
41.
Chew
,
J. W.
,
1991
, “
A Theoretical Study of Ingress for Shrouded Rotating Disk Systems With Radial Outflow
,”
ASME J. Turbomach.
,
113
(
1
), pp.
91
97
.10.1115/1.2927742
42.
Gao
,
F.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2020
, “
Inertial Waves in Turbine Rim Seal Flows
,”
Phys. Rev. Fluids
,
5
(
2
), p.
024802
.10.1103/PhysRevFluids.5.024802
You do not currently have access to this content.