Abstract

Liquid fueled gas turbines are likely to remain a dominant force in aviation propulsion for the foreseeable future, and therefore understanding the atomization process is key to meeting future emissions and performance legislation. To make experiments and simulations possible, simplified geometry and boundary conditions are often used, for example, simulations of primary atomization often use a fixed film height and velocity. This paper aims to quantify the effect of a fully developed unsteady film on the atomization process. A custom Coupled Level Set & Volume of Fluid (CLSVOF) solver with adaptive meshing built in OpenFOAM v9 is used. A simulation of the atomization process in the Karlsruhe Institute of Technology atomization experiment (Warncke et al., 2017, “Experimental and Numerical Investigation of the Primary Breakup of an Airblasted Liquid Sheet,” Int. J. Multiphase Flow, 91, pp. 208–224) is presented. A precursor simulation of the film development is used to provide accurate, temporally and spatially resolved inlet boundary conditions. These results are compared to previous CLSVOF simulations from Wetherell et al. (2020, “Coupled Level Set Volume of Fluid Simulations of Prefilming Airblast Atomization With Adaptive Meshing,” ASME Paper No. GT2020-14213)” using traditional boundary conditions. The unsteady film has doubled the modal ligament length and widened the distribution, and is now in better agreement with experimental measurements. A clear correlation in both time and space is observed between the film, atomization process, and spray. The sauter mean diameter (SMD) is significantly increased, again giving better agreement with the experiment. A discussion of extracting statistical descriptions of the spray is given, outlining the unfeasible computational cost required to converge droplet diameter distributions and other high order statistics for a case such as this.

References

1.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
CRC Press
, Boca Raton, FL.
2.
Bhayaraju
,
U.
, and
Hassa
,
C.
,
2009
, “
Planar Liquid Sheet Breakup of Prefilming and Nonprefilming Atomizers at Elevated Pressures
,”
Atomization Sprays
,
19
(
12
), pp.
1147
1169
.10.1615/AtomizSpr.v19.i12.50
3.
Chaussonnet
,
G.
,
Gepperth
,
S.
,
Holz
,
S.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2020
, “
Influence of the Ambient Pressure on the Liquid Accumulation and on the Primary Spray in Prefilming Airblast Atomization
,”
Int. J. Multiphase Flow
,
125
, p.
103229
.10.1016/j.ijmultiphaseflow.2020.103229
4.
Bhayaraju
,
U.
, and
Hassa
,
C.
,
2006
, “
Surface Wave Propagation and Breakup in Planar Liquid Sheets of Prefilming Airblast Atomisers
,”
Proceedings of the International Conference on Liquid Atomization and Spray Systems,
Osaka, Japan, Aug. 27–Sept. 1, Vol.
10
, pp.
73
1
73–8
.
5.
Brend
,
M. A.
,
Barker
,
A. G.
, and
Carrotte
,
J. F.
,
2020
, “
Measurements of Fuel Thickness for Prefilming Atomisers at Elevated Pressure
,”
Int. J. Multiphase Flow
,
131
, p.
103313
.10.1016/j.ijmultiphaseflow.2020.103313
6.
Warncke
,
K.
,
Gepperth
,
S.
,
Sauer
,
B.
,
Sadiki
,
A.
,
Janicka
,
J.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2017
, “
Experimental and Numerical Investigation of the Primary Breakup of an Airblasted Liquid Sheet
,”
Int. J. Multiphase Flow
,
91
, pp.
208
224
.10.1016/j.ijmultiphaseflow.2016.12.010
7.
Wetherell
,
J. R. J.
,
Garmory
,
A.
, and
Skarysz
,
M.
,
2020
, “
Coupled Level Set Volume of Fluid Simulations of Prefilming Airblast Atomization With Adaptive Meshing
,”
ASME
Paper No. GT2020-14213.10.1115/GT2020-14213
8.
Carmona
,
J.
,
Odier
,
N.
,
Desjardins
,
O.
,
Cuenot
,
B.
,
Misdariis
,
A.
, and
Cayre
,
A.
,
2021
, “
A Comparative Study of Direct Numerical Simulation and Experimental Results on a Prefilming Airblast Atomization Configuration
,”
Atomization Sprays
,
31
(
8
), pp.
9
32
.10.1615/AtomizSpr.2021037399
9.
Treleaven
,
N. C. W.
,
Su
,
J.
,
Garmory
,
A.
, and
Page
,
G. J.
,
2019
, “
An Efficient Method to Reproduce the Effects of Acoustic Forcing on Gas Turbine Fuel Injectors in Incompressible Simulations
,”
Flow, Turbul. Combust.
,
103
(
2
), pp.
417
437
.10.1007/s10494-019-00020-4
10.
Treleaven
,
N. C. W.
,
Staufer
,
M.
,
Spencer
,
A.
,
Garmory
,
A.
, and
Page
,
G. J.
,
2020
, “
Application of the PODFS Method to Inlet Turbulence Generated Using the Digital Filter Technique
,”
J. Comput. Phys.
,
415
, p.
109541
.10.1016/j.jcp.2020.109541
11.
Wetherell
,
J.
, and
Garmory
,
A.
, “
Air-Film Coupling in Prefilming Airblast Atomisers and the Implications for Subsequent Atomisation
,” Available at SSRN 4629125.
12.
Dianat
,
M.
,
Skarysz
,
M.
, and
Garmory
,
A.
,
2017
, “
A Coupled Level Set and Volume of Fluid Method for Automotive Exterior Water Management Applications
,”
Int. J. Multiphase Flow
,
91
, pp.
19
38
.10.1016/j.ijmultiphaseflow.2017.01.008
13.
Skarysz
,
M.
,
Garmory
,
A.
, and
Dianat
,
M.
,
2018
, “
An Iterative Interface Reconstruction Method for PLIC in General Convex Grids as Part of a Coupled Level Set Volume of Fluid Solver
,”
J. Comput. Phys.
,
368
, pp.
254
276
.10.1016/j.jcp.2018.04.044
14.
OpenFOAM
,
2022
, “
The OpenFOAM Foundation
,” accessed Feb. 19, 2024, https://openfoam.org/
15.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
16.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
17.
Sussman
,
M.
,
2003
, “
A Second Order Coupled Level Set and Volume-of-Fluid Method for Computing Growth and Collapse of Vapor Bubbles
,”
J. Comput. Phys.
,
187
(
1
), pp.
110
136
.10.1016/S0021-9991(03)00087-1
18.
Skarysz
,
M.
,
2020
, “
High Fidelity Multiphase Simulations for Automotive Exterior Water Management
,”
Ph.D. thesis
,
Loughborough University, Loughborough, UK
.https://repository.lboro.ac.uk/articles/thesis/Highfidelity_multiphase_simulations_for_automotive_exterior_water_management/12530378
19.
Chaussonnet
,
G.
,
2014
, “
Modeling of Liquid Film and Breakup Phenomena in Large-Eddy Simulations of Aeroengines Fueled by Airblast Atomizers
,”
Ph.D. thesis
,
Institut National Polytechnique de Toulouse - INPT, Toulouse, France
.https://theses.hal.science/file/index/docid/1006179/filename/chaussonnet_thesis_PublicVersion.pdf
20.
Hodgson
,
G.
,
Passmore
,
M.
,
Skarysz
,
M.
,
Garmory
,
A.
, and
Paolillo
,
F.
,
2021
, “
Contact Angle Measurements for Automotive Exterior Water Management
,”
Exp. Fluids
,
62
(
5
), pp.
1
13
.10.1007/s00348-021-03219-2
21.
Ray
,
C. S. P.
,
2020
, “
Deriving Contact Angle Models for Multi-Phase Simulations of Liquid Droplet Impact Using a Novel Deposition Approach
,” Master's thesis,
Loughborough University, Loughborough, UK
.
22.
Rizk
,
N. K.
, and
Lefebvre
,
A. H.
,
1980
, “
The Influence of Liquid Film Thickness on Airblast Atomization
,”
ASME J. Eng. Power
,
102
(
3
), pp.
706
710
.10.1115/1.3230329
23.
Treleaven
,
N. C. W.
,
Garmory
,
A.
, and
Page
,
G. J.
,
2019
, “
The Effect of Sauter Mean Diameter Fluctuations on the Heat Release Rate in a Lean-Burn Aero-Engine Combustor
,”
ASME
Paper No. GT2019-90321.10.1115/GT2019-90321
24.
Bilger
,
C.
, and
Cant
,
R. S.
,
2018
, “
Atomization and Breakup of Liquid Kerosene at Elevated Pressure
,”
Atomization Sprays
,
28
(
12
), pp.
1123
1144
.10.1615/AtomizSpr.2019028987
25.
Braun
,
S.
,
Krug
,
M.
,
Wieth
,
L.
,
Höfler
,
C.
,
Koch
,
R.
, and
Bauer
,
H. J.
,
2015
, “
Simulation of Primary Atomization: Assessment of the Smoothed Particle Hydrodynamics (SPH) Method
,”
13th Triennial International Conference on Liquid Atomization and Spray Systems
, Tainan, Taiwan, Aug.
23
27
.https://www.researchgate.net/publication/301778287_Simulation_of_Primary_Atomization_Assessment_of_the_Smoothed_Particle_Hydrodynamics_SPH_Method
26.
MATLAB
,
2021
,
Version 9.10.0 (R2021a)
,
The Mathworks Inc
.,
Natick, MA
.
27.
Rizkalla
,
A. A.
, and
Lefebvre
,
A. H.
,
1975
, “
Influence of Liquid Properties on Airblast Atomizer Spray Characteristics
,”
ASME J. Eng. Power
,
97
(
2
), pp.
173
177
.10.1115/1.3445951
You do not currently have access to this content.