Abstract

Rotor blade tip has significant influence on turbine stage aerodynamics and heat transfer. Most previous efforts have been based on low-speed cascade settings. However, more recent research on transonic blade tips exhibits distinctive flow features with qualitatively different performance sensitivities. These prompt two key issues of interest on the related flow conditioning. First, the contrast between a low-speed flow and a transonic regime highlights the less studied high-subsonic flow regime, closely relevant to many realistic turbine designs. Second, the relative casing movement and upstream inflow conditions, known to have non-negligible effects, indicate the need to examine a rotor blade tip in a realistic stator–rotor stage environment, which is also lacking. To elaborate the Mach number effect in the flow regimes of practical interest, we aim to examine a high subsonic stage in a direct and consistent comparison with a transonic one. To this end, a high subsonic stage (exit Mach number of 0.7) and a transonic (exit Mach number of 1.1) are designed at the same Reynolds number with a three-dimensional parameterization and meshing system. The tip squealer height is used as a representative parameter to investigate the sensitivity of the stage aerothermal performance. The multi-objective optimization using the Kriging surrogated model is employed to identify the Pareto fronts for the stage efficiency and the heat transfer. The comparison of the optimized results between these two stages shows distinctively different trends in the performance variation with the squealer height. The efficiency of the subsonic stage increases with the squealer height reaching a plateau. In contrast, the efficiency in the transonic stage first increases and then drops to the level comparable to that of a flat tip. Significantly, the present results indicate, for the first time, that the squealer tip in a transonic stage may not be as effective as in a subsonic stage. On the other hand, for heat transfer, sensitivity variations are more complex. The overall heat load and the local nonuniformity lead to qualitatively different sensitivities with the squealer height, as well as completely incomparable Pareto fronts. These observed heat transfer sensitivities raise the question on how to effectively conduct a combined aerodynamic and heat transfer performance design optimization. The authors subsequently resort further aerothermal physics analyses described in a companion paper as Part II of the two-part article. In Part II, the physical interpretation of the contrasting aero-efficiency sensitivities for the two stages, as well as a physical understanding leveraged selection of the objective function for such combined blade tip aerothermal optimization will be presented.

References

1.
Denton
,
J.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.10.1115/1.2929299
2.
O'Dowd
,
D.
,
Zhang
,
Q.
,
He
,
L.
,
Cheong
,
B.
, and
Tibbott
,
I.
,
2013
, “
Aerothermal Performance of a Cooled Winglet at Engine Representative Mach and Reynolds Numbers
,”
ASME J. Turbomach.
,
135
(
1
), p.
011041
.10.1115/1.4006537
3.
Zhou
,
C.
,
Hodson
,
H.
,
Tibbott
,
I.
, and
Stokes
,
M.
,
2013
, “
The Aerothermal Performance of a Cooled Winglet Tip in a High Pressure Turbine Cascade
,”
ASME J. Turbomach.
,
135
(
3
), p.
031005
.10.1115/1.4006611
4.
Key
,
N.
, and
Arts
,
T.
,
2006
, “
Comparison of Turbine Tip Leakage Flow for Flat Tip and Squealer Tip Geometries at Highspeed Conditions
,”
ASME J. Turbomach.
,
128
(
2
), pp.
213
220
.10.1115/1.2162183
5.
Mischo
,
B.
,
Behr
,
T.
, and
Abhari
,
R.
,
2008
, “
Flow Physics and Profiling of Recessed Blade Tips: Impact on Performance and Heat Load
,”
ASME J. Turbomach.
,
130
(
2
), p.
021008
.10.1115/1.2775485
6.
Duan
,
P.
, and
He
,
L.
,
2020
, “
Application of Multiscale Methodology for Transonic Turbine Blade Tip Cooling Design
,”
ASME J. Turbomach.
,
142
(
8
), p.
081011
.10.1115/1.4046462
7.
Duan
,
P.
, and
He
,
L.
,
2021
, “
Optimization of Turbine Cascade Squealer Tip Cooling Design by Combin-Ing Shaping and Flow Injection
,”
ASME J. Turbomach.
,
143
(
11
), p.
111007
.10.1115/1.4051204
8.
Schabowski
,
Z.
,
Hodson
,
H.
,
Giacche
,
D.
,
Power
,
B.
, and
Stokes
,
M.
,
2014
, “
Aeromechanical Optimization of a Winglet-Squealer Tip for an Axial Turbine
,”
ASME J. Turbomach.
,
136
(
7
), p.
071004
.10.1115/1.4025687
9.
Coull
,
J.
,
Atkins
,
N.
, and
Hodson
,
H.
,
2014
, “
Winglets for Improved Aerothermal Performance of High Pressure Turbines
,”
ASME J. Turbomach.
,
136
(
9
), p.
091007
.10.1115/1.4026909
10.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2008
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Parti: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.10.1115/1.2950068
11.
Hofer
,
T.
, and
Arts
,
T.
,
2009
, “
Aerodynamic Investigation of the Tip Leakage Flow for Blades With Different Tip Squealer Geometries at Transonic Conditions
,”
ASME
Paper No. GT2009-59909.10.1115/GT2009-59909
12.
Ma
,
H.
,
Zhang
,
Q.
,
He
,
L.
,
Wang
,
Z.
, and
Wang
,
L.
,
2017
, “
Cooling Injection Effect on a Transonic Squealer Tip - Part I: Experimental Heat Transfer Results and CFD Validation
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052506
.10.1115/1.4035175
13.
Rahim
,
A.
,
Khanal
,
B.
,
He
,
L.
, and
Romero
,
E.
,
2013
, “
Effect of Nozzle Guide Vane Lean Under Influence of Inlet Temperature Traverse
,”
ASME J. Turbomach.
,
136
(
7
), p.
071002
.10.1115/1.4025947
14.
Rahim
,
A.
, and
He
,
L.
,
2015
, “
Rotor Blade Heat Transfer of High Pressure Turbine Stage Under Inlet Hot-Streak and Swirl
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062601
.10.1115/1.4028740
15.
Atkins
,
N. R.
,
Thorpe
,
S. J.
, and
Ainsworth
,
R. W.
,
2012
, “
Unsteady Effects on Transonic Turbine Blade-Tip Heat Transfer
,”
ASME J. Turbomach.
,
134
(
6
), p.
061002
.10.1115/1.4004845
16.
Paradiso
,
B.
,
Persico
,
G.
,
Gaetani
,
P.
,
Schennach
,
O.
,
Pec- Nik
,
R.
, and
Woisetschlager
,
J.
,
2008
, “
Blade Row Interaction in a One and a Half Stage Transonic Turbine Focusing on Three Dimensional Effects: Part I Stator-Rotor Interaction
,”
ASME
Paper No. GT2008-50291.10.1115/GT2008-50291
17.
Behr
,
T.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2007
, “
Unsteady Flow Physics and Performance of a One-and-1/2-Stage Unshrouded High Work Turbine
,”
ASME J. Turbomach.
,
129
(
2
), pp.
348
359
.10.1115/1.2447707
18.
Yang
,
D.
,
Yu
,
X.
, and
Feng
,
Z.
,
2010
, “
Investigation of Leakage Flow and Heat Transfer in a Gas Turbine Blade Tip With Emphasis on the Effect of Rotation
,”
ASME J. Turbomach.
,
132
(
4
), p.
041010
.10.1115/1.3213560
19.
Virdi
,
A.
,
Zhang
,
Q.
,
He
,
L.
,
Li
,
H.
, and
Hunsley
,
R.
,
2015
, “
Aerothermal Performance of Shroudless Turbine Blade Tips With Relative Casing Movement Effects
,”
J. Propul. Power
,
31
(
2
), pp.
527
536
.10.2514/1.B35331
20.
Bindon
,
J. P.
, and
Morphis
,
G.
,
1992
, “
The Development of Axial Turbine Leakage Loss for Two Profiled Tip Geometries Using Linear Cascade Data
,”
ASME J. Turbomach.
,
114
(
1
), pp.
198
203
.10.1115/1.2927985
21.
Palafox
,
P.
,
Oldfield
,
M. L. G.
,
LaGraff
,
J. E.
, and
Jones
,
T. V.
,
2007
, “
PIV Maps of Tip Leakage and Sec-Ondary Flow Fields on a Low-Speed Turbine Blade Cascade With Moving End Wall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011001
.10.1115/1.2437218
22.
Duan
,
P.
,
Tan
,
C.
,
Scribner
,
A.
, and
Malandra
,
A.
,
2018
, “
Loss Generation in Transonic Turbine Blading
,”
ASME J. Turbomach.
,
140
(
4
), p.
041006
.10.1115/1.4038689
23.
Wheeler
,
A.
,
Atkins
,
N.
, and
He
,
L.
,
2011
, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME J. Turbomach.
,
133
(
4
), p.
041025
.10.1115/1.4002424
24.
Moore
,
J.
, and
Elward
,
K.
,
1993
, “
Shock Formation in Overexpanded Tip Leakage Flow
,”
ASME J. Turbomach.
,
115
(
3
), pp.
392
399
.10.1115/1.2929266
25.
Dunn
,
M.
, and
Haldeman
,
C.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
692
698
.10.1115/1.1311285
26.
Thorpe
,
S.
,
Yoshino
,
S.
,
Thomas
,
G.
,
Ainsworth
,
R.
, and
Harvey
,
N.
,
2005
, “
Blade-Tip Heat Transfer in a Transonic Turbine
,”
J. Power Energy
,
219
(
6
) p.
42H30
.10.1243/095765005X31171
27.
Zhang
,
Q.
, and
He
,
L.
,
2011
, “
Overtip Choking and Its Implications on Turbine Blade-Tip Aerodynamic Performance
,”
J. Propul. Power
,
27
(
5
), pp.
1008
1014
.10.2514/1.B34112
28.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.10.1115/1.4002949
29.
Zhang
,
Q.
,
O'Dowd
,
D.
,
He
,
L.
,
Oldfield
,
M.
, and
Ligrani
,
P.
,
2011
, “
Transonic Turbine Blade Tip Aerothermal Performance With Different Tip Gaps Part I: Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041027
.10.1115/1.4003063
30.
Ma
,
H.
,
Zeng
,
W.
,
Jiang
,
H.
, and
Hong
,
J.
,
2021
, “
Impact of Cooling Injection on Shock Wave Over a Flat Tip in High Pressure Turbine
,”
ASME J. Turbomach.
,
144
(
1
), p.
011012
.10.1115/1.4052135
31.
Zhang
,
Q.
, and
He
,
L.
,
2013
, “
Tip-Shaping for hp Turbine Blade Aerothermal Performance Management
,”
ASME J. Turbomach.
,
135
(
5
), p.
051025
.10.1115/1.4007896
32.
Andreoli
,
V.
,
Braun
,
J.
,
Paniagua
,
G.
,
De Maesschalck
,
C.
,
Bloxham
,
M.
,
Cummings
,
W.
, and
Langford
,
L.
,
2019
, “
Aerothermal Optimization of Fully Cooled Turbine Blade Tips
,”
ASME J. Turbomach.
,
141
(
6
), p.
061007
.10.1115/1.4041961
33.
Duan
,
P.
, and
He
,
L.
,
2023
, “
Design Optimization of Blade Tip in Subsonic and Transonic Turbine stages - Part II: Flow Physics Analysis
,”
ASME
Paper No. GT2022-83467.10.1115/GT2022-83467
34.
Denton
,
J.
,
2017
, “
Multall: An Open Source, Cfd Based, Turbomachinery Design System
,”
ASME
Paper No. GT2017-63993.10.1115/GT2017-63993
35.
Pritchard
,
L.
,
1985
, “
An Eleven Parameter Axial Turbine Airfoil Geometry Model
,”
ASME
Paper No. GT1985-219.10.1115/GT1985-219
36.
Casey
,
M.
,
1983
, “
A Computational Geometry for the Blades and Internal Flow Channels of Centrifugal Compressors
,”
ASME J. Eng. Power
,
105
(
2
), pp.
288
295
.10.1115/1.3227414
37.
Zhang
,
M.
, and
He
,
L.
,
2015
, “
Combining Shaping and Flow Control for Aerodynamic Optimization
,”
AIAA J.
,
53
(
4
), pp.
888
901
.10.2514/1.J053277
38.
Arnone
,
A.
,
Bonaiuti
,
D.
,
Focacci
,
A.
,
Pacciani
,
R.
,
Greco
,
A.
, and
Spano
,
E.
,
2004
, “
Parametric Optimization of a High-Lift Turbine Vane
,”
ASME
Paper No. GT2004-54308.10.1115/GT2004-54308
39.
Kulfan
,
B.
,
2007
, “
A Universal Parametric Geometry Representation Method — CST
,”
45th AMA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 8–11, p.
0062
.10.2514/6.2007-62
40.
Wilson
,
D.
, and
Korakianitis
,
T.
,
2014
,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
MIT Press
, Cambridge, MA.
41.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2012
, “
Blade Loading and Its Application in the Mean-Line Design of Low Pressure Turbines
,”
ASME. J. Turbomach.
,
135
(
2
), p.
021032
.10.1115/1.4006588
42.
De Maesschalck
,
C.
,
Andreoli
,
V.
,
Paniagua
,
G.
,
Gillen
,
T.
, and
Barker
,
B.
,
2021
, “
Aerothermal Optimization of Turbine Squealer Tip Geometries With Arbitrary Cooling Injection
,”
ASME J. Turbomach.
,
143
(
11
), p.
111010
.10.1115/1.4051268
You do not currently have access to this content.