Abstract

Casing treatment has been used to enhance the stability of axial-flow compressor by extending the stall margin; it also induces strong interaction with compressor blades, as demonstrated in the open literature. Revealing the mechanism of this interaction is a key to fully exploit the potential of the stability-enhancing capability of casing treatment without efficiency penalty. For this purpose, an integrated optimization design of rotor and axial slot casing treatment is implemented for a low-speed axial-flow compressor, and the stall margin is increased by 10.89% without penalty on the peak efficiency. Through detailed analysis, two important driving factors for the improvement of stall margin are illustrated: the suction effect that decreases the axial momentum of tip leakage flow, and the injection effect that increases the axial momentum of main flow. Meanwhile, it is found that the combination of forward-deflection axial slot casing treatment and forward-sweep rotor can maximize the enhancement of the momentum exchange, thereby adequately reducing the blockage region induced by tip leakage flow. More specially, the stator is then redesigned based on the matching mechanism between the stator and rotor with axial slot casing treatment in a stage. This redesign can considerably reduce entropy generation and flow separation in the passage and achieve an improvement of 0.87% in efficiency. The results hence demonstrate the superiority of integrated design of axial slot casing treatment and blades in improving both stall margin and efficiency.

References

1.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.10.1115/1.4031473
2.
Takata
,
H.
, and
Tsukuda
,
Y.
,
1977
, “
Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness
,”
ASME J. Eng. Power
,
99
(
1
), pp.
121
133
.10.1115/1.3446241
3.
Prince
,
D. C.
, Jr.
,
Wisler
,
D. C.
, and
Hilvers
,
D. E.
,
1975
, “
A Study of Casing Treatment Stall Margin Improvement Phenomena
,”
ASME
Paper No. 75-GT-60.10.1115/75-GT-60
4.
Lu
,
X.
,
Chu
,
W.
,
Zhu
,
J.
, and
Zhang
,
Y.
,
2008
, “
Numerical Investigations of the Coupled Flow Through a Subsonic Compressor Rotor and Axial Skewed Slot
,”
ASME J. Turbomach.
,
131
(
1
), p.
011001
.10.1115/1.2948959
5.
Crook
,
A. J.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Adamczyk
,
J. J.
,
1993
, “
Numerical Simulation of Compressor Endwall and Casing Treatment Flow Phenomena
,”
ASME J. Turbomach.
,
115
(
3
), pp.
501
512
.10.1115/1.2929280
6.
Mustaffa
,
A. F.
, and
Kanjirakkad
,
V.
,
2021
, “
Single and Multiple Circumferential Casing Groove for Stall Margin Improvement in a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
143
(
7
), p.
071010
.10.1115/1.4050444
7.
Smith
,
G. D. J.
, and
Cumpsty
,
N. A.
,
1984
, “
Flow Phenomena in Compressor Casing Treatment
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
532
541
.10.1115/1.3239604
8.
Chen
,
H.
,
Li
,
Y.
,
Koley
,
S. S.
,
Doeller
,
N.
, and
Katz
,
J.
,
2017
, “
An Experimental Study of Stall Suppression and Associated Changes to the Flow Structures in the Tip Region of an Axial Low Speed Fan Rotor by Axial Casing Grooves
,”
ASME J. Turbomach.
,
139
(
12
), p.
121010
.10.1115/1.4037910
9.
Chen
,
H.
,
Koley
,
S. S.
,
Li
,
Y.
, and
Katz
,
J.
,
2019
, “
Systematic Experimental Evaluations Aimed at Optimizing the Geometry of Axial Casing Groove in a Compressor
,”
ASME
Paper No. GT2019-91050.10.1115/GT2019-91050
10.
Seitz
,
P.
,
1999
, “
Casing Treatment for Axial Flow Compressors
,” Ph.D. thesis,
University of Cambridge
,
Cambridge, UK
.
11.
Weichert
,
S. A.
,
2011
, “
Tip Clearance Flows in Axial Compressors: Stall Inception and Stability Enhancement
,”
Ph.D. thesis
,
University of Cambridge
,
Cambridge, UK
.10.17863/CAM.14019
12.
Lee
,
N. K. W.
, and
Greitzer
,
E. M.
,
1989
, “
Effects of Endwall Suction and Blowing on Compressor Stability Enhancement
,”
ASME J. Turbomach.
,
112
(
1
), pp.
133
144
.10.1115/89-GT-64
13.
Fujita
,
H.
, and
Takata
,
H.
,
1984
, “
A Study of Configurations of Casing Treatment for Axial Flow Compressors
,”
Bull. JSME
,
27
(
230
), pp.
1675
1681
.10.1299/jsme1958.27.1675
14.
Goinis
,
G.
, and
Nicke
,
E.
,
2016
, “
Optimizing Surge Margin and Efficiency of a Transonic Compressor
,”
ASME
Paper No. GT2016-57896.10.1115/GT2016-57896
15.
Goinis
,
G.
,
Voß
,
C.
, and
Aulich
,
M.
,
2013
, “
Automated Optimization of an Axial-Slot Type Casing Treatment for a Transonic Compressor
,”
ASME
Paper No. GT2013-94765.10.1115/GT2013-94765
16.
Lu
,
B.
,
Zhu
,
M.
,
Teng
,
J.
, and
Qiang
,
X.
,
2021
, “
Design Strategy of Axial Slot Casing Treatment for a Transonic Compressor Rotor Based on Parametric Analysis
,”
Aerosp. Sci. Technol.
,
119
, p.
107142
.10.1016/j.ast.2021.107142
17.
Ba
,
D.
,
Zhang
,
Q.
,
Du
,
J.
,
Li
,
Z.
,
Zhang
,
H.
, and
Nie
,
C.
,
2020
, “
Design Optimization of Axial Slot Casing Treatment in a Highly-Loaded Mixed-Flow Compressor
,”
Aerosp. Sci. Technol.
,
107
, p.
106262
.10.1016/j.ast.2020.106262
18.
Streit
,
J. A.
,
Heinichen
,
F.
, and
Kau
,
H. P.
,
2013
, “
Axial-Slot Casing Treatments Improve the Efficiency of Axial Flow Compressors: Aerodynamic Effects of a Rotor Redesign
,”
ASME
Paper No. GT2013-94975.10.1115/GT2013-94975
19.
Goinis
,
G.
,
Vo
,
C.
, and
Nicke
,
E., 2019
, “
The Potential of Casing Treatments for Transonic Compressors: Evaluation Based on Axial-Slot and Rotor Blade Optimization
,” ISABE, Article No. 24368.
20.
Yoon
,
S.
, and
Cargill
,
P.
,
2022
, “
Casing Treatment: Its Potential and Limitations
,”
ASME J. Turbomach.
,
145
(
4
), p.
041011
.10.1115/1.4055928
21.
John
,
A.
,
Shahpar
,
S.
, and
Qin
,
N.
,
2017
, “
Novel Compressor Blade Shaping Through a Free-Form Method
,”
ASME J. Turbomach.
,
139
(
8
), p.
081002
.10.1115/1.4035833
22.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-Form Deformation of Solid Geometric Models
,”
Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques
, Dallas, TX, Aug. 18–22, 20(4), pp.
151
160
.https://people.eecs.berkeley.edu/~sequin/CS285/PAPERS/Sederberg_Parry.pdf
23.
Shabbir
,
A.
, and
Adamczyk
,
J. J.
,
2005
, “
Flow Mechanism for Stall Margin Improvement Due to Circumferential Casing Grooves on Axial Compressors
,”
ASME J. Turbomach.
,
127
(
4
), pp.
708
717
.10.1115/1.2008970
24.
Legras
,
G.
,
Trébinjac
,
I.
,
Gourdain
,
N.
,
Ottavy
,
X.
, and
Castillon
,
L.
,
2012
, “
A Novel Approach to Evaluate the Benefits of Casing Treatment in Axial Compressors
,”
Int. J. Rotating Mach.
,
2012
, pp.
1
19
.10.1155/2012/975407
25.
Nan
,
X.
,
Ma
,
N.
,
Li
,
J.
,
Liu
,
L.
, and
Lin
,
F.
,
2016
, “
Evaluation of the Effectiveness of Typical Casing Treatments for a Low-Speed Compressor by an Integral Method
,”
Aerosp. Sci. Technol.
,
52
, pp.
234
242
.10.1016/j.ast.2016.03.001
26.
Cameron
,
J. D.
,
Bennington
,
M. A.
,
Ross
,
M. H.
,
Morris
,
S. C.
,
Du
,
J.
,
Lin
,
F.
, and
Chen
,
J.
,
2013
, “
The Influence of Tip Clearance Momentum Flux on Stall Inception in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
135
(
5
), p.
051005
.10.1115/1.4007800
27.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S.
,
Greitzer
,
E.
, and
Spakovszky
,
Z.
,
2019
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME J. Turbomach.
,
141
(
6
), p.
061010
.10.1115/1.4042250
28.
Jiaju
,
D.
, and
Zhiwei
,
C.
,
2010
, “
Using the SPSS Method to Realize Size Analysis of Linear Regression
,”
Bull. Biol.
,
45
(
2
), pp.
4
6
.
29.
Zhifa
,
Y.
,
Jingyu
,
Z.
, and
Mancai
,
G.
,
2001
, “
Decision Coefficient: Size Analysis of Decision Index
,”
J. Northwest Agric. For. Univ. Sci. Technol.
,
29
(
5
), pp.
131
133
.
You do not currently have access to this content.