Abstract

The vision of a carbon-neutral world implies the shift from fossil to clean fuels for combustion-driven processes and machines like gas turbines. Green hydrogen is a promising alternative to substitute natural gas and other fossil fuels. In the H2mGT project, funded by the German BMWK, a microgas turbine (mGT) burner with 100% hydrogen firing is developed and validated. The project is collaboration between Technische Universität Berlin (TUB) and the manufacturer Euro-K GmbH. The project consists of three phases: (1). Atmospheric pressure tests with a fused silica combustion chamber; (2). Atmospheric pressure tests with counterflow-cooled steel combustion chamber and secondary air injection; (3). Validation of the burner in the micro gas turbine at elevated pressure levels. This paper will present the results of Phase 1. The hydrogen burner is based on a swirl-stabilized burner of TUB and was scaled to match the requirements of the mGT with its 130 kW thermal power. The burner design features multiple geometrical parameters to enable the optimization of the flame towards low NOx emissions. Therefore, a variable swirl intensity, additional axial momentum of air in the mixing tube, a movable center-body and different fuel injection locations are implemented. Phase 1 investigates the parameter space in terms of flame stability, operational range, and parameter impact on flame shape and emissions. Therefore, temperature, pressure, and emission measurements as well as OH* imaging are carried out. It is found that the flame can be operated over a large range of equivalence ratios and preheating temperatures up to 500 ∘C for many parameter settings. However, at some configurations, flashback into the mixing tube is triggered. As expected, the NOx emissions are mainly influenced by the equivalence ratio, the fuel distribution, and the swirl intensity. Single-digit emissions are reached up to an equivalence ratio of 0.4 at atmospheric pressure conditions. Furthermore, at low air mass flow, the burner can be operated at 100% natural gas or 100% hydrogen without any geometry changes. The fuel switch, thereby, does not change the NOx emissions significantly if reasonable normalization is used.

References

1.
Bradley
,
T.
, and
Marra
,
J.
,
2012
, “
Advanced Hydrogen Turbine Development Update
,”
ASME
Paper No. GT2012-68169. 10.1115/GT2012-68169
2.
Kundu
,
A.
,
Klingmann
,
J.
,
Subash
,
A. A.
, and
Collin
,
R.
,
2017
, “
Fuel Flexibility of a Multi-Staged Prototype Gas Turbine Burner
,”
ASME
Paper No. GT2017-64782. 10.1115/GT2017-64782
3.
Lam
,
K.-K.
,
Geipel
,
P.
, and
Larfeldt
,
J.
,
2015
, “
Hydrogen Enriched Combustion Testing of Siemens Industrial SGT-400 at Atmospheric Conditions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
021502
.10.1115/1.4028209
4.
Lam
,
K.-K.
, and
Parsania
,
N.
,
2016
, “
Hydrogen Enriched Combustion Testing of Siemens SGT-400 at High Pressure Conditions
,”
ASME
Paper No. GT2016-57470. 10.1115/GT2016-57470
5.
Lantz
,
A.
,
Collin
,
R.
,
Aldén
,
M.
,
Lindholm
,
A.
,
Larfeldt
,
J.
, and
Lörstad
,
D.
,
2015
, “
Investigation of Hydrogen Enriched Natural Gas Flames in a SGT-700/800 Burner Using OH PLIF and Chemiluminescence Imaging
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031505
.10.1115/1.4028462
6.
Larfeldt
,
J.
,
Andersson
,
M.
,
Larsson
,
A.
, and
Moëll
,
D.
,
2017
, “
Hydrogen Co-Firing in Siemens Low Nox Industrial Gas Turbines
,” POWER-GEN,
Europe, Cologne, Germany
,
Las Vegas, NV
, Dec. 5–7.https://www.semanticscholar.org/paper/Hydrogen-Co-Firing-in-Siemens-Low-NOX-Industrial-Larfeldt/37fd8e07212bf1e60f6db535d6e422b11880b816
7.
Wu
,
J.
,
Brown
,
P.
,
Diakunchak
,
I.
,
Gulati
,
A.
,
Lenze
,
M.
, and
Koestlin
,
B.
,
2007
, “
Advanced Gas Turbine Combustion System Development for High Hydrogen Fuels
,”
ASME
Paper No. GT2007-28337. 10.1115/GT2007-28337
8.
Cerutti
,
M.
,
Cocchi
,
S.
,
Modi
,
R.
,
Sigali
,
S.
, and
Bruti
,
G.
,
2014
, “
Hydrogen Fueled Dry Low NOx Gas Turbine Combustor Conceptual Design
,”
ASME
Paper No. GT2014-26136.10.1115/GT2014-26136
9.
Lacy
,
B.
,
Ziminsky
,
W.
,
Lipinski
,
J.
,
Varatharajan
,
B.
,
Yilmaz
,
E.
, and
Brumberg
,
J.
,
2008
, “
Low Emissions Combustion System Development for the GE Energy High Hydrogen Turbine Program
,”
ASME
Paper No. GT2008-50823.10.1115/GT2008-50823
10.
York
,
W. D.
,
Ziminsky
,
W. S.
, and
Yilmaz
,
E.
,
2013
, “
Development and Testing of a Low NOx Hydrogen Combustion System for Heavy-Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022001
.10.1115/1.4007733
11.
Asai
,
T.
,
Dodo
,
S.
,
Karishuku
,
M.
,
Yagi
,
N.
,
Akiyama
,
Y.
, and
Hayashi
,
A.
,
2015
, “
Performance of Multiple-Injection Dry low-NOx Combustors on Hydrogen-Rich Syngas Fuel in an IGCC Pilot Plant
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091504
.10.1115/1.4029614
12.
Inoue
,
K.
,
Miyamoto
,
K.
,
Domen
,
S.
,
Tamura
,
I.
,
Kawakami
,
T.
, and
Tanimura
,
S.
,
2018
, “
Development of Hydrogen and Natural Gas Co-Firing Gas Turbine
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
55
(
2
), p.
1
.http://www.mhi.co.jp/technology/review/pdf/e552/e552160.pdf
13.
Nose
,
M.
,
Kawakami
,
T.
,
Araki
,
H.
,
Senba
,
N.
, and
Tanimura
,
S.
,
2018
, “
Hydrogen-Fired Gas and Turbine Targeting and Realization of and CO2-Free Society
,”
Mitsubishi Heavy Indu. Tech. Rev.
,
55
(
4
), pp.
1
7
.https://www.mhi.co.jp/technology/review/pdf/e554/e554180.pdf
14.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790.10.1115/GT2017-64790
15.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
16.
Ciani
,
A.
,
Bothien
,
M.
,
Bunkute
,
B.
,
Wood
,
J.
, and
Früchtel
,
G.
,
2019
, “
Superior Fuel and Operational Flexibility of Sequential Combustion in Ansaldo Energia Gas Turbines
,”
J. Global Power Propul. Soc.
,
3
, pp.
630
638
.10.33737/jgpps/110717
17.
Alavandi
,
S. K.
,
Etemad
,
S.
, and
Baird
,
B. D.
,
2013
, “
Low Single Digit NOx Emissions Catalytic Combustor for Advanced Hydrogen Turbines for Clean Coal Power Systems
,”
ASME
Paper No. GT2012-68128. 10.1115/GT2012-68128
18.
Bullard
,
T.
,
Steinbrenner
,
A.
,
Stuttaford
,
P.
,
Jansen
,
D.
, and
de Bruijne
,
T.
,
2018
, “
Improvement of Premixed Gas Turbine Combustion System Fuel Flexibility With Increased Hydrogen Consumption in a Renewable Market Place
,”
ASME
Paper No. GT2018-75553. 10.1115/GT2018-75553
20.
ETN
,
2020
, “
Hydrogen Gas Turbines - The Path Towards a Zero-Carbon Gas Turbine
,”
European Turbine Network (ETN Global
), Report.https://etn.global/wp-content/uploads/2020/02/ETN-Hydrogen-Gas-Turbines-report.pdf
21.
Schefer
,
R.
,
Wicksall
,
D.
, and
Agrawal
,
A.
,
2002
, “
Combustion of Hydrogen-Enriched Methane in a Lean Premixed Swirl-Stabilized Burner
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
843
851
.10.1016/S1540-7489(02)80108-0
22.
Schefer
,
R.
,
2003
, “
Hydrogen Enrichment for Improved Lean Flame Stability
,”
Int. J. Hydrogen Energy
,
28
(
10
), pp.
1131
1141
.10.1016/S0360-3199(02)00199-4
23.
Hussain
,
T.
,
Talibi
,
M.
, and
Balachandran
,
R.
,
2019
, “
Investigating the Effect of Local Addition of Hydrogen to Acoustically Excited Ethylene and Methane Flames
,”
Int. J. Hydrogen Energy
,
44
(
21
), pp.
11168
11184
.10.1016/j.ijhydene.2019.02.182
24.
Beerer
,
D.
,
McDonell
,
V.
,
Therkelsen
,
P.
, and
Cheng
,
R. K.
,
2014
, “
Flashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low-Swirl Injector at Elevated Pressures and Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031502
.10.1115/1.4025636
25.
Page
,
D.
,
Shaffer
,
B.
, and
McDonell
,
V.
,
2013
, “
Establishing Operating Limits in a Commercial Lean Premixed Combustor Operating on Synthesis Gas Pertaining to Flashback and Blowout
,”
ASME
Paper No. GT2012-69355. 10.1115/GT2012-69355
26.
Syred
,
N.
,
Abdulsada
,
M.
,
Griffiths
,
A.
,
O'Doherty
,
T.
, and
Bowen
,
P.
,
2012
, “
The Effect of Hydrogen Containing Fuel Blends Upon Flashback in Swirl Burners
,”
Appl. Energy
,
89
(
1
), pp.
106
110
.10.1016/j.apenergy.2011.01.057
27.
Emadi
,
M.
,
Karkow
,
D.
,
Salameh
,
T.
,
Gohil
,
A.
, and
Ratner
,
A.
,
2012
, “
Flame Structure Changes Resulting From Hydrogen-Enrichment and Pressurization for Low-Swirl Premixed Methane–Air Flames
,”
Int. J. Hydrogen Energy
,
37
(
13
), pp.
10397
10404
.10.1016/j.ijhydene.2012.04.017
28.
Lin
,
Y.-C.
,
2014
, “
Characteristics of Turbulent Lean-Premixed Combustion for Hydrogen-Rich Fuel Gases
,”
Ph.D. thesis
,
ETH Zurich, Zürich, Switzerland
.https://www.researchcollection.ethz.ch/bitstream/handle/20.500.11850/154708/eth-14551-01.pdf
29.
Strakey
,
P.
,
Sidwell
,
T.
, and
Ontko
,
J.
,
2007
, “
Investigation of the Effects of Hydrogen Addition on Lean Extinction in a Swirl Stabilized Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3173
3180
.10.1016/j.proci.2006.07.077
30.
Lingstädt
,
T.
,
Seliger
,
H.
,
Reh
,
S.
, and
Huber
,
A.
,
2018
, “
Technologiebericht 2.2b Dezentrale Kraftwerke (Motoren Und Turbinen)
,”
Technologien Für Die Energiewende. teilbericht 2 an Das Bundesministerium Für Wirtschaft Und Energie (Bmwi)
,
Wuppertal Institut, ISI, IZES
.
31.
Reale
,
F.
, and
Sannino
,
R.
,
2022
, “
Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review
,”
Energies
,
15
(
3
), p.
900
.10.3390/en15030900
32.
Liu
,
A.
,
Yang
,
Y.
,
Chen
,
L.
,
Zeng
,
W.
, and
Wang
,
C.
,
2020
, “
Experimental Study of Biogas Combustion and Emissions for a Micro Gas Turbine
,”
Fuel
,
267
, p.
117312
.10.1016/j.fuel.2020.117312
33.
Okafor
,
E. C.
,
Somarathne
,
K. A.
,
Ratthanan
,
R.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
,
Tsujimura
,
T.
,
Furutani
,
H.
, and
Kobayashi
,
H.
,
2020
, “
Control of NOx and Other Emissions in Micro Gas Turbine Combustors Fuelled With Mixtures of Methane and Ammonia
,”
Combust. Flame
,
211
, pp.
406
416
.10.1016/j.combustflame.2019.10.012
34.
Du Toit
,
M.
,
Engelbrecht
,
N.
,
Oelofse
,
S. P.
, and
Bessarabov
,
D.
,
2020
, “
Performance Evaluation and Emissions Reduction of a Micro Gas Turbine Via the Co-Combustion of h2/CH4/CO2 Fuel Blends
,”
Sustainable Energy Technol. Assess.
,
39
, p.
100718
.10.1016/j.seta.2020.100718
35.
de Santoli
,
L.
,
Basso
,
G. L.
,
Barati
,
S.
,
D'Ambra
,
S.
, and
Fasolilli
,
C.
,
2020
, “
Seasonal Energy and Environmental Characterization of a Micro Gas Turbine Fueled With h2 ng Blends
,”
Energy
,
193
, p.
116678
.10.1016/j.energy.2019.116678
36.
Therkelsen
,
P.
,
Mauzey
,
J.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2008
, “
Evaluation of a Low Emission Gas Turbine Operated on Hydrogen
,”
ASME
Paper No. GT2006-90725. 10.1115/GT2006-90725
37.
Therkelsen
,
P.
,
Werts
,
T.
,
McDonell
,
V.
, and
Samuelsen
,
S.
,
2009
, “
Analysis of NOx Formation in a Hydrogen-Fueled Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031507
.10.1115/1.3028232
38.
Devriese
,
C.
,
Penninx
,
G.
,
de Ruiter
,
G.
,
Bastiaans
,
R.
, and
Paepe
,
W.
,
2020
, “
The CFD Design and Optimisation of a 100 kW Hydrogen Fuelled mGT
,”
ASME
Paper No. GT2020-14473.10.1115/GT2020-14473
39.
Cappelletti
,
A.
,
Martelli
,
F.
,
Bianchi
,
E.
, and
Trifoni
,
E.
,
2014
, “
Numerical Redesign of 100 kw MGT Combustor for 100% h2 Fueling
,”
Energy Procedia
,
45
, pp.
1412
1421
.10.1016/j.egypro.2014.01.148
40.
Pappa
,
A.
,
Bricteux
,
L.
,
Bénard
,
P.
, and
Paepe
,
W. D.
,
2021
, “
Can Water Dilution Avoid Flashback on a Hydrogen-Enriched Micro-Gas Turbine Combustion?—A Large Eddy Simulations Study
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041008
.10.1115/1.4049798
41.
Stathopoulos
,
P.
,
Kuhn
,
P.
,
Wendler
,
J.
,
Tanneberger
,
T.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
,
Schmalhofer
,
C.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2017
, “
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041507
.10.1115/1.4034687
42.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Increasing Flashback Resistance in Lean Premixed Swirl-Stabilized Hydrogen Combustion by Axial Air Injection
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071503
.10.1115/1.4029119
43.
Reichel
,
T. G.
,
Goeckeler
,
K.
, and
Paschereit
,
C. O.
,
2015
, “
Investigation of Lean Premixed Swirl-Stabilized Hydrogen Burner With Axial Air Injection Using OH-PLIF Imaging
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111513
.10.1115/1.4031181
44.
Reichel
,
T. G.
, and
Paschereit
,
C. O.
,
2017
, “
Interaction Mechanisms of Fuel Momentum With Flashback Limits in Lean-Premixed Combustion of Hydrogen
,”
Int. J. Hydrogen Energy
,
42
(
7
), pp.
4518
4529
.10.1016/j.ijhydene.2016.11.018
45.
Reichel
,
T. G.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2018
, “
Flashback Resistance and Fuel–Air Mixing in Lean Premixed Hydrogen Combustion
,”
J. Propul. Power
,
34
(
3
), pp.
690
701
.10.2514/1.B36646
46.
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Krüger
,
O.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Numerical Investigation of the Flow Field and Mixing in a Swirl-Stabilized Burner With a Non-Swirling Axial Jet
,”
ASME
Paper No. GT2015-43382. 10.1115/GT2015-43382
47.
Mira
,
D.
,
Lehmkuhl
,
O.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Paschereit
,
C. O.
,
Vázquez
,
M.
, and
Houzeaux
,
G.
,
2018
, “
Numerical Investigation of a Lean Premixed Swirl-Stabilized Hydrogen Combustor and Operational Conditions Close to Flashback
,”
ASME
Paper No. GT2018-76229. 10.1115/GT2018-76229
48.
Mira
,
D.
,
Lehmkuhl
,
O.
,
Both
,
A.
,
Stathopoulos
,
P.
,
Tanneberger
,
T.
,
Reichel
,
T. G.
,
Paschereit
,
C. O.
,
Vázquez
,
M.
, and
Houzeaux
,
G.
,
2020
, “
Numerical Characterization of a Premixed Hydrogen Flame Under Conditions Close to Flashback
,”
Flow, Turbul. Combust.
,
104
(
2–3
), pp.
479
507
.10.1007/s10494-019-00106-z
49.
D.
,
Mira
,
A.
,
Both
,
O.
,
Lehmkuhl
,
B.
,
S.
,
Gomez Gonzalez
,
J.
,
Forck
,
T.
,
Tanneberger
,
P.
,
Stathopoulos
., and
C. O.
,
Paschereit
,
2021
, “
High-Fidelity Simulations of the Mixing and Combustion of a Technically Premixed Hydrogen Flame
,”
10th European Combustion Meeting
, Online, Apr. 14–15, pp.
1104
1109
.https://www.researchgate.net/publication/357159500_Highfidelity_simulations_of_the_mixing_and_combustion_of_a_technically_premixed_hydrogen_flame
50.
Prikopsky
,
K.
,
2007
, “
Characterization of Continuous Diffusion Flames in Supercritical Water
,”
Ph.D. thesis
,
ETH Zurich, Zürich, Switzerland
.https://www.researchcollection.ethz.ch/bitstream/handle/20.500.11850/4135/eth-29992-02.pdf
51.
Tanneberger
,
T.
,
Stathopoulos
,
P.
,
Rösch
,
S.
,
Rex
,
C.
, and
Mundstock
,
J.
,
2021
, “
Entwicklung Einer Mikrogasturbine Für 100% Wasserstoff
,”
Proceedings of 30.Deutscher Flammentag
,
Hannover-Garbsen
, Online, Sept. 28–29.
52.
Guiberti
,
T. F.
,
Durox
,
D.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2015
, “
Analysis of Topology Transitions of Swirl Flames Interacting With the Combustor Side Wall
,”
Combust. Flame
,
162
(
11
), pp.
4342
4357
.10.1016/j.combustflame.2015.07.001
53.
Douglas
,
C. M.
,
Emerson
,
B. L.
,
Lieuwen
,
T. C.
,
Martz
,
T.
,
Steele
,
R.
, and
Noble
,
B.
,
2022
,
Nox Emissions From Hydrogen-Methane Fuel Blends
,
Georgia Tech Library
,
Atlanta, GA
.
54.
Garan
,
N.
,
Dybe
,
S.
,
Paschereit
,
C. O.
, and
Djordjevic
,
N.
,
2022
, “
Consistent Emission Correction Factors Applicable to Novel Energy Carriers and Conversion Concepts
,”
Fuel
,
341
, p.
127658
.10.1016/j.fuel.2023.127658
55.
Funke
,
H.-W.
,
Beckmann
,
N.
, and
Abanteriba
,
S.
,
2019
, “
An Overview on Dry Low NOx Micromix Combustor Development for Hydrogen-Rich Gas Turbine Applications
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6978
6990
.10.1016/j.ijhydene.2019.01.161
You do not currently have access to this content.