Abstract

The analysis of the structural dynamics of multistage cyclic structures as linked components is required to model the interstage coupling. In turbomachinery, this can result in a collaboration between different compressor or turbine stages. This paper investigates the coupling between two rear drum blade integrated disk stages of an axial compressor to support the mechanical design process. Considering the vibration modeshapes of a multistage system, different components may coparticipate in the dynamics. For this reason, criteria to identify the modes affected by the coupling and to quantify this coupling are defined. This allows to distinguish between modes with interstage coupling, requiring the multistage system for their description, and uncoupled modes, involving a single stage. In addition, it is of interest to research methods to reduce the impact of the coupling on the vibrating system without drastically altering the geometry of the components. The vibration analyses of a two-stage compressor generalized geometry, representative of a compressor rear drum blisk, are presented as a study case. The use of a reducing method allows to describe the behavior of the nominal multistage system with a computationally efficient technique, enabling a parametric analysis of the stages' coupling. The investigation considers the effect of a set of geometrical and mechanical parameters on the dynamics, identifying the driving parameters of the coupled vibration characteristics.

References

1.
Srinivasan
,
A.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades: An Igti Scholar Paper
,”
ASME
Paper No. 97-GT-533.10.1115/97-GT-533
2.
Crawley
,
E. F.
,
1988
, “
Structural Dynamics and Aeroelasticity
,”
AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines
, Vol.
2
,
Aeroelastic Formulation for Tuned and Mistuned Rotors
, NATO, Advisory Group for Aerospace Research and Development, Brussels, Belgium, pp.
1
24
, Ch. 19.
3.
Mead
,
D. J.
,
1975
, “
Wave Propagation and Natural Modes in Periodic Systems: I. mono-Coupled Systems
,”
J. Sound Vib.
,
40
(
1
), pp.
1
18
.10.1016/S0022-460X(75)80227-6
4.
Chun
,
S.-B.
, and
Lee
,
C.-W.
,
1996
, “
Vibration Analysis of Shaft-Bladed Disk System by Using Substructure Synthesis and Assumed Modes Method
,”
J. Sound Vib.
,
189
(
5
), pp.
587
608
.10.1006/jsvi.1996.0038
5.
Chatelet
,
E.
,
D'ambrosio
,
F.
, and
Jacquet-Richardet
,
G.
,
2005
, “
Toward Global Modelling Approaches for Dynamic Analyses of Rotating Assemblies of Turbomachines
,”
J. Sound Vib.
,
282
(
1–2
), pp.
163
178
.10.1016/j.jsv.2004.02.035
6.
Jalali
,
M. H.
,
Ghayour
,
M.
,
Ziaei-Rad
,
S.
, and
Shahriari
,
B.
,
2014
, “
Dynamic Analysis of a High Speed Rotor-Bearing System
,”
Measurement
,
53
, pp.
1
9
.10.1016/j.measurement.2014.03.010
7.
Turhan
,
Ö.
, and
Bulut
,
G.
,
2006
, “
Linearly Coupled Shaft-Torsional and Blade-Bending Vibrations in Multi-Stage Rotor-Blade Systems
,”
J. Sound Vib.
,
296
(
1–2
), pp.
292
318
.10.1016/j.jsv.2006.03.010
8.
Craig
,
R. R.
, Jr.
, and
Bampton
,
M. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
9.
Krattiger
,
D.
,
Wu
,
L.
,
Zacharczuk
,
M.
,
Buck
,
M.
,
Kuether
,
R. J.
,
Allen
,
M. S.
,
Tiso
,
P.
, and
Brake
,
M. R.
,
2019
, “
Interface Reduction for Hurty/Craig-Bampton Substructured Models: Review and Improvements
,”
Mech. Syst. Signal Process.
,
114
, pp.
579
603
.10.1016/j.ymssp.2018.05.031
10.
Laxalde
,
D.
,
Thouverez
,
F.
, and
Lombard
,
J.-P.
,
2007
, “
Dynamical Analysis of Multi-Stage Cyclic Structures
,”
Mech. Res. Commun.
,
34
(
4
), pp.
379
384
.10.1016/j.mechrescom.2007.02.004
11.
Laxalde
,
D.
,
Lombard
,
J.-P.
, and
Thouverez
,
F.
,
2007
, “
Dynamics of Multistage Bladed Disks Systems
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1058
1064
.10.1115/1.2747641
12.
Sternchüss
,
A.
,
Balmès
,
E.
,
Jean
,
P.
, and
Lombard
,
J.-P.
,
2009
, “
Reduction of Multistage Disk Models: Application to an Industrial Rotor
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
012502
.10.1115/1.2967478
13.
Beirow
,
B.
,
Kühhorn
,
A.
,
Figaschewsky
,
F.
,
Bornhorn
,
A.
, and
Repetckii
,
O. V.
,
2019
, “
Forced Response reduction of a Blisk by Means of Intentional Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011008
.10.1115/1.4040715
14.
Beirow
,
B.
,
Kühhorn
,
A.
,
Figaschewsky
,
F.
,
Hönisch
,
P.
,
Giersch
,
T.
, and
Schrape
,
S.
,
2019
, “
Model Update and Validation of a Mistuned High-Pressure Compressor Blisk
,”
Aeronaut. J.
,
123
(
1260
), pp.
230
247
.10.1017/aer.2018.149
15.
Klauke
,
T.
,
Kühhorn
,
A.
,
Beirow
,
B.
, and
Golze
,
M.
,
2009
, “
Numerical Investigations of Localized Vibrations of Mistuned Blade Integrated Disks (Blisks)
,”
ASME J. Turbomach.
,
131
(
3
), p.
031002
.10.1115/1.2985074
16.
Bladh
,
R.
,
Castanier
,
M.
, and
Pierre
,
C.
,
2003
, “
Effects of Multistage Coupling and Disk Flexibility on Mistuned Bladed Disk Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
121
130
.10.1115/1.1498267
17.
Laxalde
,
D.
, and
Pierre
,
C.
,
2011
, “
Modelling and Analysis of Multi-Stage Systems of Mistuned Bladed Disks
,”
Comput. Struct.
,
89
(
3–4
), pp.
316
324
.10.1016/j.compstruc.2010.10.020
18.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numerical Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
19.
Wildheim
,
J.
,
1981
, “
Vibrations of Rotating Circumferentially Periodic Structures
,”
Q. J. Mech. Appl. Math.
,
34
(
2
), pp.
213
229
.10.1093/qjmam/34.2.213
20.
Wildheim
,
J.
,
1981
, “
Excitation of Rotating Circumferentially Periodic Structures
,”
J. Sound Vib.
,
75
(
3
), pp.
397
416
.10.1016/0022-460X(81)90386-2
You do not currently have access to this content.