Abstract

Modern compressor design targets require high performance and a wide operating range in order to reduce the environmental impact. To understand the fluid dynamics mechanisms that trigger instability, studying the system at the stability limit is required. In this work, a two-stage back-to-back centrifugal compressor for refrigerant applications has been simulated with computational fluid dynamics (CFD) techniques using unsteady calculations in different operating points close to surge. These models have been validated by comparing numerical performance with experimental data. An in-depth fluid dynamics analysis combined with the monitoring of several pressure signals, postprocessed with FFT, identified different flow phenomena in the two stages toward the surge limit. The key role of the volute that induces a stronger upstream counterpressure in the first stage has been highlighted. This effect causes the formation of high entropy (low momentum) rotating cells in the diffuser that involve a higher channel portion with respect to the flow structure in the second diffuser. This phenomenon affects the upstream flow conditions at the impeller. In addition, the interaction between the inlet guide vane (IGV) and the inducer has been analyzed, observing that in the second stage, due to the flow nonuniformity after the intermediate compressor pipe, non-negligible separations occur. Starting from the peaks detected in the FFT analysis of the pressure signals, all the above flow mechanisms have been detected and discussed.

References

1.
Jansen
,
W.
,
1964
, “
Rotating Stall in a Vaneless Diffuser
,”
ASME J. Basic Eng.
,
86
(
4
), pp.
750
758
.10.1115/1.3655945
2.
Abdelhamid
,
A. N.
,
1983
, “
Effects of Vaneless Diffuser Geometry on Flow Instability in Centrifugal Compression Systems
,”
Can. Aeronaut. Space J.
,
1983
(
3
), pp.
259
266
.
3.
Frigne
,
P.
, and
Van Den Braembussche
,
R.
,
1984
, “
Distinction Between Different Types of Impeller and Diffuser Rotating Stall in a Centrifugal Compressor With Vaneless Diffuser
,”
ASME J. Eng. Gas Turbines Power
,
106
(
2
), pp.
468
474
.10.1115/1.3239589
4.
Iwakiri
,
K.
,
Furukawa
,
M.
,
Ibaraki
,
S.
, and
Tomita
,
I.
,
2009
, “
Unsteady and Three-Dimensional Flow Phenomena in a Transonic Centrifugal Compressor Impeller at Rotating Stall
,”
ASME
Paper No. GT2009-59516.10.1115/GT2009-59516
5.
Tomita
,
I.
,
Ibaraki
,
S.
,
Furukawa
,
M.
, and
Yamada
,
K.
,
2013
, “
The Effect of Tip Leakage Vortex for Operating Range Enhancement of Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
5
), p.
051020
.10.1115/1.4007894
6.
Everitt
,
J. N.
, and
Spakovszky
,
Z. S.
,
2013
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser
,”
ASME J. Turbomach.
,
135
, p.
011025
.10.1115/1.4006533
7.
Krain
,
H.
,
1981
, “
A Study on Centrifugal Impeller and Diffuser Flow
,”
ASME J. Eng. Power
,
103
(
4
), pp.
688
697
.10.1115/1.3230791
8.
Liu
,
Y.
, and
Liu
,
B.
,
2010
, “
Investigation of Unsteady Impeller-Diffuser Interaction in a Transonic Centrifugal Compressor Stage
,”
ASME
Paper No. GT2010-22737.10.1115/GT2010-22737
9.
Yamada
,
K.
,
Furukawa
,
M.
,
Arai
,
H.
, and
Kanazaki
,
D.
,
2017
, “
Evolution of Reverse Flow in a Transonic Centrifugal Compressor at Near-Surge
,”
ASME
Paper No. GT2017-63568.10.1115/GT2017-63568
10.
Dehner
,
R.
, and
Selamet
,
A.
,
2019
, “
Three-Dimensional Computational Fluid Dynamics Prediction of Turbocharger Centrifugal Compression System Instabilities
,”
ASME J. Turbomach.
,
141
(
8
), p.
081004
.10.1115/1.4042728
11.
Grapow
,
F.
,
Olasek
,
K.
,
Liskiewicz
,
G.
,
Nagiera
,
R.
, and
Kryt-Towicz
,
W.
,
2021
, “
Experimental Study of Vaneless Diffuser Rotating Stall Development and Cell-Merging Phenomena
,”
ASME J. Turbomach.
,
143
(
5
), p.
051008
.10.1115/1.4050119
12.
Fujisawa
,
N.
,
Naitou
,
M.
, and
Ohta
,
Y.
,
2022
, “
Interaction Mechanism of Impeller and Diffuser Stall in a Centrifugal Compressor
,”
ASME
Paper No. GT2022-82861.10.1115/GT2022-82861
13.
Jeon
,
S. H.
,
Hwang
,
D. H.
,
Park
,
J. H.
,
Kim
,
C. H.
,
Baek
,
J. H.
, and
Kim
,
H. W.
,
2016
, “
Numerically Study on the Effect of a Volute on Surge Phenomena in a Centrifugal Compressor
,”
ASME
Paper No. GT2016-57542.10.1115/GT2016-57542
14.
Ceyrowsky
,
T.
,
Hildebrandt
,
A.
, and
Schwarze
,
R.
,
2018
, “
Numerical Investigation of the Circumferential Pressure Distortion Induced by a Centrifugal Compressor's External Volute
,”
ASME
Paper No. GT2018-75919.10.1115/GT2018-75919
15.
Yu
,
L.
,
Cousins
,
W. T.
,
Shen
,
F.
,
Kalitzin
,
G.
,
Sishtla
,
V.
, and
Sharma
,
O.
,
2016
, “
Numerical Investigation of the Effect of Diffuser and Volute Design Parameters on the Performance of a Centrifugal Compressor Stage
,”
ASME
Paper No. GT2016-57057.10.1115/GT2016-57057
16.
Shen
,
F.
,
Yu
,
L.
,
Cousins
,
W. T.
,
Sishtla
,
V.
, and
Sharma
,
O. P.
,
2016
, “
Numerical Investigation of the Flow Distortion Impact on a Refrigeration Centrifugal Compressor
,”
ASME
Paper No. GT2016-57063.10.1115/GT2016-57063
17.
Lou
,
F.
,
Harrison
,
H. M.
, and
Key
,
N.
,
2022
, “
Investigation of Surge in a Transonic Centrifugal Compressor With Vaned Diffuser: Part 1 – Surge Signature
,”
ASME
Paper No. TURBO-22-1147.10.1115/TURBO-22-1147
18.
Paul
,
D.
, and
Eißler
,
W.
,
2022
, “
Numerical Investigation of Unsteady Flow Phenomena in a Centrifugal Compressor Operating Near Surge With a Geometrically Reduced Model
,”
ASME
Paper No. GT2022-80383.10.1115/GT2022-80383
19.
Palmer
,
D. L.
, and
Waterman
,
W. F.
,
1994
, “
Design and Development of an Advanced Two-Stage Centrifugal Compressor
,”
ASME
Paper No. 94-GT-202.10.1115/94-GT-202
20.
Huang
,
J. M.
, and
Tsai
,
Y. H.
,
2014
, “
Design and Analysis of a Split Deswirl Vane in a Two-Stage Refrigeration Centrifugal Compressor
,”
Adv. Mech. Eng.
,
6
, p.
130925
.10.1155/2014/130925
21.
Hung
,
K. S.
,
Chung
,
J. C.
,
Liu
,
C. C.
, and
Huang
,
J. M.
,
2017
, “
A Study of Off-Design Performance Improvement for a Centrifugal Refrigerant Compressor
,”
Adv. Mech. Eng.
,
9
(
3
), p.
168781401769622
.10.1177/1687814017696224
22.
Wang
,
Q.
, and
Chen
,
K.
,
2007
, “
Numerical Investigation of Aerodynamic Performance Influenced by Circumferentially Preswirling Coming Flow on the Crossover and de-Swirling Cascade of a Multistage Centrifugal Compressor
,”
Front. Energy Power Eng. China
,
1
(
4
), pp.
435
440
.10.1007/s11708-007-0063-5
23.
Cambio
,
M.
,
2000
, “
Performance Analysis of a Two-Stage Refrigeration Centrifugal Compressor With Variable Inlet Guide Vanes on Both Stages
,”
Proceedings of the 15th International Compressor Engineering Conference at Purdue University
,
West Lafayette, IN
, July 25–28, pp.
88
91
.https://core.ac.uk/download/pdf/4957071.pdf
24.
Seki
,
W.
,
Ueda
,
K.
,
Shirakata
,
Y.
,
Fukushima
,
R.
,
Mori
,
K.
, and
Koga
,
J.
,
2006
, “
New Model Turbo Chiller, AART Series, Contributes to the Reduction of Energy Consumption Under Year-Run Operation
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
43
, pp.
1
5
.
25.
Xu
,
C.
,
Fan
,
C.
,
Zhang
,
Z.
, and
Mao
,
Y.
,
2021
, “
Numerical Study of Wake and Potential Interactions in a Two-Stage Centrifugal Refrigeration Compressor
,”
Eng. Appl. Comput. Fluid Mech.
,
15
(
1
), pp.
313
327
.10.1080/19942060.2021.1875887
26.
Zhu
,
W.
,
Ren
,
X. D.
,
Li
,
X. S.
, and
Gu
,
C. W.
,
2018
, “
Analysis and Improvement of a Two-Stage Centrifugal Compressor Used in an MW-Level Gas Turbine
,”
Appl. Sci.
,
8
(
8
), p.
1347
.10.3390/app8081347
27.
Halbe
,
C. V.
,
O'Brien
,
W. F.
,
Cousins
,
W. T.
, and
Sishtla
,
V.
,
2015
, “
A CFD Analysis of the Effects of Two-Phase Flow in a Two-Stage Centrifugal Compressor
,”
ASME
Paper No. GT2015-42534.10.1115/GT2015-42534
28.
Halbe
,
C. V.
,
O'Brien
,
W. F.
,
Cousins
,
W. T.
, and
Sishtla
,
V.
,
2018
, “
A Numerical Analysis of the Effects of Liquid Carryover on the Performance of a Two-Stage Centrifugal Compressor
,”
ASME
Paper No. GT2018-77015.10.1115/GT2018-77015
29.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
1999
, “
Multistage Centrifugal Compressor Surge Analysis: Part I—Experimental Investigation
,”
ASME J. Turbomach.
,
121
(
2
), pp.
305
311
.10.1115/1.2841315
30.
Arnulfi
,
G. L.
,
Giannattasio
,
P.
,
Giusto
,
C.
,
Massardo
,
A. F.
,
Micheli
,
D.
, and
Pinamonti
,
P.
,
1999
, “
Multistage Centrifugal Compressor Surge Analysis: Part II—Numerical Simulation and Dynamic Control Parameters Evaluation
,”
ASME J. Turbomach.
,
121
(
2
), pp.
312
320
.10.1115/1.2841316
31.
Scano
,
L.
, and
Arnulfi
,
G. L.
,
2007
, “
Rotating Stall Model and Simulation of Two-Stage Centrifugal Compressors
,”
ASME
Paper No. GT2007-27922.10.1115/GT2007-27922
32.
Cousins
,
W. T.
, and
Davis
,
M. W.
, Jr.
2012
, “
The Influence of the Characteristics of a Centrifugal Compressor on System Stability and Distortion Response
,”
ASME
Paper No. GT2012-68214.10.1115/GT2012-68214
33.
Silvestri
,
P.
,
Marelli
,
S.
, and
Capobianco
,
M.
,
2021
, “
Incipient Surge Analysis in Time and Frequency Domain for Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
10
), p.
101020
.10.1115/1.4051956
34.
Champ
,
C.
,
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2021
, “
Incipient Surge Detection in Large Volume Energy Systems Based on Wigner–Ville Distribution Evaluated on Vibration Signals
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071014
.10.1115/1.4049855
35.
Reggio
,
F.
,
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2022
, “
Operation Extension in Gas Turbine-Based Advanced Cycles With a Surge Prevention Tool
,”
Meccanica
,
57
(
8
), pp.
2117
2130
.10.1007/s11012-022-01540-6
36.
Carretta
,
M.
,
Cravero
,
C.
, and
Marsano
,
D.
,
2017
, “
Numerical Prediction of Centrifugal Compressor Stability Limit
,”
ASME
Paper No. GT2017-63352.10.1115/GT2017-63352
37.
Bardelli
,
M.
,
Cravero
,
C.
,
Marini
,
M.
,
Marsano
,
D.
, and
Milingi
,
O.
,
2019
, “
Numerical Investigation of Impeller-Vaned Diffuser Interaction in a Centrifugal Compressor
,”
Appl. Sci.
,
9
(
8
), p.
1619
.10.3390/app9081619
38.
Cravero
,
C.
, and
Marsano
,
D.
,
2020
, “
Criteria for the Stability Limit Prediction of High-Speed Centrifugal Compressors With Vaneless Diffuser. Part I: Flow Structure Analysis
,”
ASME
Paper No. GT2020-14579.10.1115/GT2020-14579
39.
Cravero
,
C.
, and
Marsano
,
D.
,
2020
, “
Criteria for the Stability Limit Prediction of High-Speed Centrifugal Compressors With Vaneless Diffuser. Part II: The Development of Prediction Criteria
,”
ASME
Paper No. GT2020-14589.10.1115/GT2020-14589
40.
Cravero
,
C.
,
Leutcha
,
P. J.
, and
Marsano
,
D.
,
2022
, “
Simulation and Modelling of Ported Shroud Effects on Radial Compressor Stage Stability Limits
,”
Energies
,
15
(
7
), p.
2571
.10.3390/en15072571
41.
Schultz
,
J. M.
,
1962
, “
The Polytropic Analysis of Centrifugal Compressors
,”
J. Eng. Power
,
84
(
1
), pp.
69
82
.10.1115/1.3673381
42.
Cousins
,
W. T.
,
Yu
,
L.
,
Garofano
,
J.
,
Botros
,
B.
,
Sishtla
,
V.
, and
Sharma
,
O.
,
2014
, “
Test and Simulation of the Effects of Surface Roughness on a Shrouded Centrifugal Impeller
,”
ASME
Paper No. GT2014-25480.10.1115/GT2014-25480
43.
Cousins
,
W. T.
,
Yu
,
L.
,
Sishtla
,
V.
, and
Shen
,
F.
,
2018
, “
Analytical and Experimental Results of a Novel Single-Stage Centrifugal Compressor With Economizer Injection
,”
ASME
Paper No. GT2018-76967.10.1115/GT2018-76967
You do not currently have access to this content.