Abstract

A major challenge for gas turbine combustor technology is the emission of NOx and carbon monoxide (CO). Achieving an optimal premixed, prevaporized, dry low-NOx condition is a critical issue for liquid fuel combustors. To accomplish this, the relationship between combustor configuration and the performance of a newly developed swirl-assisted jet-stabilized combustor is investigated in an atmospheric combustion facility. The combustor consists of a pressure-swirl fuel atomizer, a prefilmer/mixing channel, an axial moderate swirler (swirl number = 0.6), and a jet nozzle. The jet nozzle allowed for bulk velocities of 50–130 m/s. The influence of each combustor component on combustion performance and fuel evaporation behavior is evaluated independently using optical combustion diagnostics. In addition, the effect of air and liquid fuel temperature on fuel evaporation is characterized. Jet A-1 was injected coaxially into the air stream under both spray and superheated conditions. During the experiments, five critical combustor components were varied to understand their individual effect on fuel vaporization and thus combustion performance. Exhaust gas emissions of NOx, CO, and unburned hydrocarbons (UHC) as well as OH* chemiluminescence images were used to evaluate combustor performance. Mie scattering technique was used to analyze the degree of liquid fuel evaporation for different test cases. It was found that the combustion performance indicator CO, height above burner, and flame length were well controlled by the degree of fuel evaporation, while NOx emissions showed little change with different combustor configurations. While the main factor influencing the level of NOx emissions was the adiabatic flame temperature, the quality of fuel evaporation played a minor role. It was found that the operating range of the combustor and the geometric shape of the flame are significantly influenced by the components of the combustor.

References

1.
Lee
,
D. S.
,
Fahey
,
D. W.
,
Skowron
,
A.
,
Allen
,
M. R.
,
Burkhardt
,
U.
,
Chen
,
Q.
,
Doherty
,
S. J.
, et al.,
2021
, “
The Contribution of Global Aviation to Anthropogenic Climate Forcing for 2000 to 2018
,”
Atmos. Environ.
,
244
, p.
117834
.10.1016/j.atmosenv.2020.117834
2.
Liu
,
Y.
,
Sun
,
X.
,
Sethi
,
V.
,
Nalianda
,
D.
,
Li
,
Y.-G.
, and
Wang
,
L.
,
2017
, “
Review of Modern Low Emissions Combustion Technologies for Aero Gas Turbine Engines
,”
Prog. Aerosp. Sci.
,
94
, pp.
12
45
.10.1016/j.paerosci.2017.08.001
3.
Lefebvre
,
A. H.
,
1995
, “
The Role of Fuel Preparation in Low-Emission Combustion
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
617
654
.10.1115/1.2815449
4.
Rokke
,
P. E.
, and
Hustad
,
J. E.
,
2005
, “
Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions; Combustion Testing With Focus on Stability and Emissions
,”
Int. J. Thermodyn.
,
8
(
5
), pp.
167
173
.10.5541/IJOT.1034000158
5.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
CRC Press
: Taylor & Francis Group,
Boca Raton, FL
.
6.
Nickolaus
,
D.
,
Crocker
,
D.
,
Black
,
D.
, and
Smith
,
C.
,
2002
, “
Development of a Lean Direct Fuel Injector for Low Emission Aero Gas Turbines
,”
ASME
Paper No. GT2002-30409.10.1115/GT2002-30409
7.
Behrendt
,
T.
,
Heinze
,
J.
, and
Hassa
,
C.
,
2003
, “
Experimental Investigation of a New LPP Injector Concept for Aero Engines at Elevated Pressures
,”
ASME
Paper No. GT2003-38444.10.1115/GT2003-38444
8.
Lammel
,
O.
,
Stöhr
,
M.
,
Kutne
,
P.
,
Dem
,
C.
,
Meier
,
W.
, and
Aigner
,
M.
,
2012
, “
Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041506
.10.1115/1.4004733
9.
Izadi
,
S.
,
Zanger
,
J.
,
Baggio
,
M.
,
Seliger-Ost
,
H.
,
Kutne
,
P.
, and
Aigner
,
M.
,
2024
, “
Experimental Investigation of the Effect of Superheated Liquid Fuel Injection On the Combustion Characteristics of Lean Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051012
.10.1115/1.4063772
10.
Kathrotia
,
T.
,
Oßwald
,
P.
,
Zinsmeister
,
J.
,
Methling
,
T.
, and
Köhler
,
M.
,
2021
, “
Combustion Kinetics of Alternative Jet Fuels, Part-III: Fuel Modeling and Surrogate Strategy
,”
Fuel
,
302
, p.
120737
.10.1016/j.fuel.2021.120737
11.
Vignat
,
G.
,
Durox
,
D.
, and
Candel
,
S.
,
2022
, “
The Suitability of Different Swirl Number Definitions for Describing Swirl Flows: Accurate, Common and (Over-) Simplified Formulations
,”
Prog. Energy Combust. Sci.
,
89
, p.
100969
.10.1016/j.pecs.2021.100969
12.
Izadi
,
S.
,
Zanger
,
J.
,
Kislat
,
O.
,
Enderle
,
B.
,
Grimm
,
F.
,
Kutne
,
P.
, and
Aigner
,
M.
,
2021
, “
Experimental Investigation of the Combustion Behavior of Single-Nozzle Liquid-FLOX®-Based Burners on an Atmospheric Test Rig
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071021
.10.1115/1.4049166
13.
Izadi
,
S.
,
Zanger
,
J.
,
Kislat
,
O.
,
Enderle
,
B.
,
Grimm
,
F.
,
Kutne
,
P.
,
Aigner
,
M.
, and
Kraus
,
C.
,
2021
, “
A Design of Experiments Based Investigation of the Influence of Hot Cross-Flow Gas on a FLOX®-Based Single-Nozzle Liquid Burner
,”
ASME
Paper No. GT2021-59029.10.1115/GT2021-59029
14.
Izadi
,
S.
,
2018
, “
Characterization of Pressure Atomizers for a Single Nozzle Liquid FLOX® Burner Using Optical and Laser Diagnostics
,” M.S. thesis,
Institute of Combustion Technology for Aerospace Engineering (IVLR), University of Stuttgart, Stuttgart, Germany
.
15.
Albregtsen
,
F.
,
2008
,
Reflection, Refraction, Diffraction, and Scattering
,
University of Oslo
,
Oslo, Norway
.
16.
de
,
L. M.
,
Saveliev
,
A.
,
Kennedy
,
L. A.
, and
Zelepouga
,
S. A.
,
2007
, “
OH and CH Luminescence in Opposed Flow Methane Oxy-Flames
,”
Combust. Flame
,
149
(
4
), pp.
435
447
.10.1016/j.combustflame.2007.01.008
17.
Kathrotia
,
T.
,
2011
,
Reaction Kinetics Modeling of OH(∗), CH(∗), and C2(∗) Chemiluminescence
,
Ruprecht-Karls-Universität
,
Heidelberg, Germany
.
18.
Zanger
,
J.
,
2016
,
Experimentelle Charakterisierung Eines Atmosphärisch Betriebenen, Jet-Stabilisierten Mikrogasturbinenbrenners Für Erdgas
,
Universität
,
Stuttgart, Germany
.
19.
Bower
,
H. E.
,
Schwärzle
,
A.
,
Grimm
,
F.
,
Zornek
,
T.
, and
Kutne
,
P.
,
2019
, “
Experimental Analysis of a Micro Gas Turbine Combustor Optimized for Flexible Operation With Various Gaseous Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), pp.
1
9
.10.1115/1.4044901
20.
Rachner
,
M.
,
1998
,
Die Stoffeigenschaften Von Kerosin Jet A-1
,
DLR, Abt. Unternehmensorganisation Und –Information
, Köln-Porz, Germany.
You do not currently have access to this content.