Abstract

Our study investigates the impact of nanoparticulate additives—specifically those based on ammonia and water—on the combustion characteristics of Jet-A1 aviation fuel, using a 300-kW liquid swirl combustor. Experiments were conducted at two global equivalence ratios (Φ = 0.24 and Φ = 0.40), focusing on laminar flame speed (LFS) and flame properties through chemiluminescence imaging and modal analysis techniques. The primary objective was to understand how these nano-additives modulate flame dynamics and internal chemical reactions, alongside evaluating the environmental implications of combustion alterations. Results showed that integrating urea and water additives into the fuel matrix affected LFS, enhancing it at the lower equivalence ratio but having detrimental effects at the higher ratio. Modal analysis revealed a notable stabilizing influence on flame behavior, especially under leaner fuel conditions. The addition of water and urea influenced combustion chemistry and spray patterns, leading to more uniform sprays and more complete combustion. Chemiluminescence imaging demonstrated higher emission intensity of NH2* radicals compared to NH* radicals, varying with the global equivalence ratio. The data indicated a significant reduction in NOx emissions, particularly at lower equivalence ratios, accompanied by a slight increase in CO2 and CO emissions.

References

1.
Lindström
,
B.
,
Karlsson
,
J. A. J.
,
Ekdunge
,
P.
,
De Verdier
,
L.
,
Häggendal
,
B.
,
Dawody
,
J.
,
Nilsson
,
M.
, and
Pettersson
,
L. J.
,
2009
, “
Diesel Fuel Reformer for Automotive Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
34
(
8
), pp.
3367
3381
.10.1016/j.ijhydene.2009.02.013
2.
De Giorgi
,
M. G.
,
Sciolti
,
A.
,
Campilongo
,
S.
, and
Ficarella
,
A.
,
2016
, “
Image Processing for the Characterization of Flame Stability in a Non-Premixed Liquid Fuel Burner Near Lean Blowout
,”
Aerosp. Sci. Technol.
,
49
, pp.
41
51
.10.1016/j.ast.2015.11.030
3.
Kaluri
,
A.
,
Malte
,
P.
, and
Novosselov
,
I.
,
2018
, “
Real-Time Prediction of Lean Blowout Using Chemical Reactor Network
,”
Fuel
,
234
, pp.
797
808
.10.1016/j.fuel.2018.07.065
4.
De Giorgi
,
M. G.
,
Campilongo
,
S.
,
Ficarella
,
A.
,
De Falco
,
G.
,
Commodo
,
M.
, and
D'Anna
,
A.
,
2017
, “
Pollutant Formation During the Occurrence of Flame Instabilities Under Very-Lean Combustion Conditions in a Liquid-Fuel Burner
,”
Energies
,
10
(
3
), p.
352
.10.3390/en10030352
5.
Wang
,
Z.
,
Wu
,
S.
,
Huang
,
Y.
,
Huang
,
S.
,
Shi
,
S.
,
Cheng
,
X.
, and
Huang
,
R.
,
2018
, “
Experimental Investigation on Spray, Evaporation and Combustion Characteristics of Ethanol-Diesel, Water Emulsified Diesel and Neat Diesel Fuels
,”
Fuel
,
231
, pp.
438
448
.10.1016/j.fuel.2018.05.129
6.
Maawa
,
W. N.
,
Mamat
,
R.
,
Najafi
,
G.
, and
De Goey
,
L. P. H.
,
2020
, “
Performance, Combustion, and Emission Characteristics of a CI Engine Fueled With Emulsified Diesel-Biodiesel Blends at Different Water Contents
,”
Fuel
,
267
, p.
117265
.10.1016/j.fuel.2020.117265
7.
L Daggett
,
D. L.
,
Ortanderl
,
S.
,
Eames
,
D.
,
Berton
,
J. J.
, and
Snyder
,
C. A.
,
2004
, “
Revisiting Water Injection for Commercial Aircraft
,”
Session: Turbine Engine Technologies
, Paper No. 3108.https://www.researchgate.net/profile/Jeff-Berton/publication/287645497_Revisiting_Water_Injection_for_Commercial_Aircraft/links/5678505d08ae0ad265c82b7f/Revisiting-Water-Injection-for-Commercial-Aircraft.pdf
8.
Francioso
,
L.
,
De Pascali
,
C.
,
Sglavo
,
V.
,
Grazioli
,
A.
,
Masieri
,
M.
, and
Siciliano
,
P.
,
2017
, “
Fabrication and Experimental Testing of an Heat Sink Free Wearable Thermoelectric Generator
,”
Energy Convers. Manage
,
145
, pp.
204
213
.10.1016/j.enconman.2017.04.096
9.
Ghannam
,
M. T.
, and
Selim
,
M. Y. E.
,
2009
, “
Stability Behavior of Water-in-Diesel Fuel Emulsion
,”
Pet. Sci. Technol
,
27
(
4
), pp.
396
411
.10.1080/10916460701783969
10.
Farokhipour
,
A.
,
Hamidpour
,
E.
, and
Amani
,
E.
,
2018
, “
A Numerical Study of NOx Reduction by Water Spray Injection in Gas Turbine Combustion Chambers
,”
Fuel
,
212
, pp.
173
186
.10.1016/j.fuel.2017.10.033
11.
Pugh
,
D. G.
,
Bowen
,
P. J.
,
Marsh
,
R.
,
Crayford
,
A. P.
,
Runyon
,
J.
,
Morris
,
S.
,
Valera-Medina
,
A.
, and
Giles
,
A.
,
2017
, “
Dissociative Influence of H2O Vapour/Spray on Lean Blowoff and NOx Reduction for Heavily Carbonaceous Syngas Swirling Flames
,”
Combust. Flame
,
177
, pp.
37
48
.10.1016/j.combustflame.2016.11.010
12.
Baena-Zambrana
,
S.
,
Repetto
,
S. L.
,
Lawson
,
C. P.
, and
Lam
,
J. W.
,
2013
, “
Behaviour of Water in Jet Fuel – a Literature Review
,”
Prog. ASME Aerosp. Sci
,
60
, pp.
35
44
.10.1016/j.paerosci.2012.12.001
13.
Koebel
,
M.
,
Elsener
,
M.
, and
Kleemann
,
M.
,
2000
, “
Urea-SCR: A Promising Technique to Reduce NOx Emissions From Automotive Diesel Engines
,”
Catal. Today
,
59
(
3–4
), pp.
335
345
.10.1016/S0920-5861(00)00299-6
14.
Kleemann
,
M.
,
Elsener
,
M.
,
Koebel
,
M.
, and
Wokaun
,
A.
,
2000
, “
Hydrolysis of Isocyanic Acid on SCR Catalysts
,”
Ind. Eng. Chem. Res.
,
39
(
11
), pp.
4120
4126
.10.1021/ie9906161
15.
Pratt
,
D. T.
,
1967
,
Performance of Ammonia Fired Gas Turbine Combustors
,
Berkeley University of California
,
Berkeley (CA)
, Report No. TS-67-5, DA-04-200-AMC-791(x).
16.
Bull
,
M. G.
,
1968
,
Development of an Ammonia-Burning Gas Turbine Engine
,
U.S. Army Engineer Research and Development Laboratories - Solar Turbines International
,
San Diego (CA)
, Report No. ER-1584-3.
17.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. D. K.
,
Okafor
,
A.
, and
Ekenechukwu
,
C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
18.
Mosevitzky
,
B.
,
Azoulay
,
R.
,
Naamat
,
L.
,
Shter
,
G. E.
, and
Grader
,
G. S.
,
2018
, “
Effects of Water Content and Diluent Pressure on the Ignition of Aqueous Ammonia/Ammonium Nitrate and Urea/Ammonium Nitrate Fuels
,”
Appl. Energy
,
224
, pp.
300
308
.10.1016/j.apenergy.2018.04.107
19.
De Giorgi
,
M. G.
,
Fontanarosa
,
D.
,
Ficarella
,
A.
, and
Pescini
,
E.
,
2020
, “
Effects on Performance, Combustion and Pollutants of Water Emulsified Fuel in an Aeroengine Combustor
,”
Appl. Energy
,
260
, p.
114263
.10.1016/j.apenergy.2019.114263
20.
Fontanarosa
,
D.
,
De Giorgi
,
M. G.
,
Ciccarella
,
G.
,
Pescini
,
E.
, and
Ficarella
,
A.
,
2021
, “
Combustion Performance of a Low NOx Gas Turbine Combustor Using Urea Addition Into Liquid Fuel
,”
Fuel
,
288
, p.
119701
.10.1016/j.fuel.2020.119701
21.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
, pp.
798
828
.10.1017/jfm.2016.103
22.
Karmarkar
,
A.
,
Gupta
,
S.
,
Boxx
,
I.
,
Hemchandra
,
S.
, and
O'Connor
,
J.
,
2022
, “
Impact of Precessing Vortex Core Dynamics on the Thermoacoustic Instabilities in a Swirl-Stabilized Combustor
,”
J. Fluid Mech.
,
946
,
A36
.10.1017/jfm.2022.610
23.
Zhang
,
B.
,
Ooka
,
R.
, and
Kikumoto
,
H.
,
2021
, “
Identification of Three-Dimensional Flow Features Around a Square-Section Building Model Via Spectral Proper Orthogonal Decomposition
,”
Phys. Fluids
,
33
(
3
), p.
035151
.10.1063/5.0041395
24.
Choi
,
J.
,
Rajasegar
,
R.
,
Lee
,
T.
, and
Yoo
,
J.
,
2020
, “
Development and Characterization of Swirl-Stabilized Diffusion Mesoscale Burner Array
,”
Appl. Therm. Eng.
,
175
, p.
115373
.10.1016/j.applthermaleng.2020.115373
25.
Nanda
,
Y.
, and
Gutmark
,
E.
,
2021
, “
Modal Analysis of Combustion Instabilities in Interacting Swirl Nozzles
,”
AIAA
Paper No. 0792.10.2514/6.0792
26.
Liu
,
Y.
,
Li
,
J.
,
Zhang
,
T.
, and
Yan
,
Y.
,
2021
, “
Active Suppression of Swirl-Stabilized Combustion Instability
,”
Fuel
,
287
, p.
119559
.10.1016/j.fuel.2020.119559
27.
Tao
,
C.
,
Zhang
,
C.
,
Xue
,
X.
,
Fan
,
X.
,
Gao
,
J.
,
Feng
,
X.
, and
Gao
,
X.
,
2023
, “
Flame Dynamics and Combustion Instability Induced by Flow-Flame Interactions in a Centrally-Staged Combustor
,”
Aerosp. Sci. Technol.
,
142
, p.
108635
.10.1016/j.ast.2023.108635
28.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures Part III: Dynamics and Scaling
,”
Q. Appl. Math.
,
45
(
3
), pp.
583
590
.10.1090/qam/910464
29.
Tropea
,
C.
,
Yarin
,
A. L.
, and
Foss
,
J. F.
,
2007
,
Springer Handbook of Experimental Fluid Mechanics
, Vol.
1
,
Springer Science & Business Media, Berlin
.10.1007/978-3-540-30299-5
30.
Kypraiou
,
A. M.
,
Dowling
,
A. P.
,
Mastorakos
,
E.
, and
Karimi
,
N.
,
2015
, “
Proper Orthogonal Decomposition Analysis a Turbulent Swirling Self-Excited Premixed Flame
,”
AIAA
Paper No. 0425.10.2514/6.0425
31.
Towne
,
A.
,
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2018
, “
Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis
,”
J. Fluid Mech.
,
847
, pp.
821
867
.10.1017/jfm.2018.283
32.
Schmidt
,
O. T.
, and
Colonius
,
T.
,
2020
, “
Guide to Spectral Proper Orthogonal Decomposition
,”
AIAA J.
,
58
(
3
), pp.
1023
1033
. 10.2514/1.J058809
33.
Welch
,
P.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.  10.1109/TAU.1967.1161901
34.
He
,
X.
,
Fang
,
Z.
,
Rigas
,
G.
, and
Vahdati
,
M.
,
2021
, “
Spectral Proper Orthogonal Decomposition of Compressor Tip Leakage Flow
,”
Phys. Fluids
,
33
(
10
), p.
105105
.10.1063/5.0065929
35.
Liu
,
X.
,
Wang
,
Y.
,
Bai
,
Y.
,
Zhou
,
Q.
, and
Yang
,
W.
,
2022
, “
Development and Verification of a Physical–Chemical Surrogate Model of RP-3 Kerosene With Skeletal Mechanism for Aircraft SI Engine
,”
Fuel
,
311
, p.
122626
.10.1016/j.fuel.2021.122626
36.
Kee
,
R.
,
Grcar
,
J.
,
Smooke
,
M.
,
Miller
,
J.
, and
Meeks
,
E.
,
1985
, “
PREMIX: A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,”
Sandia Rep.
,
143
, pp. 1–87.http://www.ae.iitm.ac.in/~amitk/AS5640/PREMIX.pdf
37.
Lamoureux
,
N.
,
Merhubi
,
H. E.
,
Pillier
,
L.
,
de Persis
,
S.
, and
Desgroux
,
P.
,
2016
, “
Modeling of NO Formation in Low Pressure Premixed Flames
,”
Combust. Flame
,
163
, pp.
557
575
.10.1016/j.combustflame.2015.11.007
You do not currently have access to this content.