Abstract

Current total pressure measurement techniques in rotating detonation combustors (RDCs) are based on different assumptions and therefore show different applicability for specific RDC operating conditions, and few studies have directly compared these techniques. Therefore, this study comprehensively tested three total pressure measurement techniques: the direct Kiel probe method, the Mach-corrected capillary tube averaged pressure (CTAP) method, and the equivalent available pressure (EAP) method under different RDC geometries and mass flow rates, and compared them with their corresponding uncertainties considered. The results show that for all tests in this study, the EAP method shows the largest uncertainty range up to 24%, which is mainly contributed by the load cell calibration process, while the direct Kiel probe method has the lowest uncertainty range, which is consistently below 7%. These uncertainties were incorporated into the comparison between the three techniques via Gaussian process regression, showing that the direct Kiel probe method and the Mach-corrected CTAP method can present EAP-like total pressure. In particular, the total pressure of the single wave with counter-rotating components (SWCC) and L modes measured by the three techniques is very comparable. This work shows that the comparability of total pressure techniques depends on the specific RDC environment, and provides the possibility to evaluate the RDC performance with the simplest implementation.

References

1.
Zhou
,
R.
,
Wu
,
D.
, and
Wang
,
J.
,
2016
, “
Progress of Continuously Rotating Detonation Engines
,”
Chin. J. Aeronaut.
,
29
(
1
), pp.
15
29
.10.1016/j.cja.2015.12.006
2.
Anand
,
V.
, and
Gutmark
,
E.
,
2019
, “
Rotating Detonation Combustors and Their Similarities to Rocket Instabilities
,”
Prog. Energy Combust. Sci.
,
73
, pp.
182
234
.10.1016/j.pecs.2019.04.001
3.
Ma
,
J. Z.
,
Luan
,
M.-Y.
,
Xia
,
Z.-J.
,
Wang
,
J.-P.
,
Zhang
,
S.-J.
,
Yao
,
S.-B.
, and
Wang
,
B.
,
2020
, “
Recent Progress, Development Trends, and Consideration of Continuous Detonation Engines
,”
AIAA J.
,
58
(
12
), pp.
4976
5035
.10.2514/1.J058157
4.
Bach
,
E.
,
Thethy
,
B. S.
,
Edgington-Mitchell
,
D.
,
Rezay Haghdoost
,
M.
,
Paschereit
,
C. O.
,
Stathopoulos
,
P.
, and
Bohon
,
M. D.
,
2022
, “
Kiel Probes for Stagnation Pressure Measurement in Rotating Detonation Combustors
,”
AIAA J.
,
60
(
6
), pp.
3724
3735
.10.2514/1.J061061
5.
Brophy
,
C. M.
, and
Codoni
,
J.
,
2019
, “
Experimental Performance Characterization of an RDE Using Equivalent Available Pressure
,”
AIAA
Paper No. 2019-4212.10.2514/6.2019-4212
6.
Fievisohn
,
R. T.
,
Hoke
,
J.
, and
Holley
,
A. T.
,
2022
, “
Experimental Measurements of Equivalent Available Pressure—Lessons Learned
,”
AIAA
Paper No. 2022-0833.10.2514/6.2022-0833
7.
Kaemming
,
T. A.
, and
Paxson
,
D. E.
,
2018
, “
Determining the Pressure Gain of Pressure Gain Combustion
,”
AIAA
Paper No. 2018-4567.10.2514/6.2018-4567
8.
Dille
,
K.
,
Frederick
,
M.
,
Slabaugh
,
C. D.
, and
Heister
,
S. D.
,
2023
, “
Time-Resolved Stagnation Pressure Measurement Technique in a Rotating Detonation Rocket Combustor
,”
AIAA
Paper No. 2023-1871.10.2514/6.2023-1871
9.
Dille
,
K.
,
Frederick
,
M.
,
Slabaugh
,
C. D.
, and
Heister
,
S. D.
,
2024
, “
Rotating Detonation Combustor Performance Informed Through a Novel Megahertz-Rate Stagnation Pressure Measurement
,”
Phys. Fluids
,
36
(
2
), p.
026127
.10.1063/5.0195465
10.
Fievisohn
,
R. T.
,
Hoke
,
J.
, and
Holley
,
A. T.
,
2020
, “
Equivalent Available Pressure Measurements on a Laboratory RDE
,”
AIAA
Paper No. 2020-2285.10.2514/6.2020-2285
11.
Bach
,
E.
,
Paschereit
,
C. O.
,
Stathopoulos
,
P.
, and
Bohon
,
M. D.
,
2021
, “
An Empirical Model for Stagnation Pressure Gain in Rotating Detonation Combustors
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3807
3814
.10.1016/j.proci.2020.07.071
12.
Feleo
,
A. D.
, and
Gamba
,
M.
,
2024
, “
Evaluation of Uncertainties of Pressure Gain Measurements in Rotating Detonation Combustor
,”
AIAA J.
,
62
(
1
), pp.
108
126
.10.2514/1.J063205
13.
Kayser
,
T.
,
Wei
,
H.
,
Bach
,
E.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2023
, “
Experimental Comparison of Different Pressure Gain Measurement Techniques for RDCs
,”
AIAA
Paper No. 2023-0929.10.2514/6.2023-0929
14.
Anderson
,
J. D.
,
2003
,
Modern Compressible Flow
,
McGraw-Hill
,
New York
.
15.
Schwer
,
D. A.
,
Brophy
,
C. M.
, and
Kelso
,
R. H.
,
2018
, “
Pressure Characteristics of an Aerospike Nozzle in a Rotating Detonation Engine
,”
AIAA
Paper No. 2018-4968.10.2514/6.2018-4968
16.
Klopsch
,
R.
,
Garan
,
N.
,
Bach
,
E.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2024
, “
Parametric Influence on Rotating Detonation Combustion: Insights From Fast Reactive Euler Simulations
,”
AIAA J.
,
62
(
1
), pp.
127
139
.10.2514/1.J063193
17.
Fotia
,
M. L.
,
Hoke
,
J.
, and
Schauer
,
F.
,
2021
, “
Experimental Response of Capillary Tube Attenuated Pressure Measurements Under High-Amplitude, Nonlinear Forcing
,”
J. Propul. Power
,
37
(
2
), pp.
283
291
.10.2514/1.B38009
18.
Bluemner
,
R.
,
2020
, “
Operating Mode Dynamics in Rotating Detonation Combustors
,”
Ph.D. thesis
,
Technische Universitat
Berlin, Berlin, Germany
.10.14279/depositonce-10401
19.
Bach
,
E.
,
Stathopoulos
,
P.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2020
, “
Performance Analysis of a Rotating Detonation Combustor Based on Stagnation Pressure Measurements
,”
Combust. Flame
,
217
(
2020
), pp.
21
36
.10.1016/j.combustflame.2020.03.017
20.
Bluemner
,
R.
,
Gutmark
,
E. J.
,
Paschereit
,
C. O.
, and
Bohon
,
M. D.
,
2021
, “
Stabilization Mechanisms of Longitudinal Pulsations in Rotating Detonation Combustors
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3797
3806
.10.1016/j.proci.2020.07.063
You do not currently have access to this content.