Abstract

Modern heavy duty industrial gas turbines in combined cycle configuration, with rated efficiencies (at ISO base load) above 60% net LHV, are expected to play a significant role in reducing the carbon footprint of utility scale electricity generation. Even without postcombustion capture (PCC), simply switching from coal-fired generation to natural gas-fired generation reduces carbon dioxide emissions by 60% (on a kg per MWh of generation basis). In simple cycle mode, with efficiencies above 40% net LHV and startup times around 20 min, 300–400+ MW gas turbines can easily serve as peakers to support variable renewable resources, i.e., wind and solar. In this paper, a close quantitative look is taken at the capabilities of gas turbines firing natural gas, hydrogen, or a blend thereof, both in simple and combined cycle configurations. Furthermore, using published data, first-principles calculations, and software simulations, it will be shown that the gas turbine constitutes an efficient and cost-effective technology, with and without carbon capture, as a key player in decarbonization of the electric power sector.

References

1.
Roberts
,
H. A.
,
1983
, “
The Logistics and Economics of a CO2 Flood
,”
International Energy Agency Workshop
, Vienna, Austria, Aug. 25.
2.
Clarke
,
D.
,
Debeljak
,
B.
,
de Janeiro
,
V.
,
Göttlicher
,
G.
,
Graham
,
D.
,
Kirkegaard
,
N.
, and
Madsen
,
M.
,
2004
,
CO2 Capture and Storage, A VGB Report on the State of the Art
,
VGB PowerTech e.V
,
Essen, Germany
.
3.
IEA GHG
,
2000
, “
Leading Options for the Capture of CO2 Emissions at Power Stations
,” IEA Greenhouse Gas R&D Programme, Report No. Nr PH3/14.
4.
IIjima
,
M.
,
Nagayasu
,
T.
,
Kamijyo
,
T.
, and
Nakatani
,
S.
,
2011
, “
MHI's Energy Efficient Flue Gas CO2 Capture Technology and Large-Scale CCS Demonstration Test at Coal-Fired Power Plants in USA
,”
MHI Tech. Rev.
,
48
(
1
), pp.
26
32
.https://docplayer.net/6188140-Mhi-s-energy-efficientflue-gas-co-2-capture-technology-and-large-scale-ccs-demonstration-test-at-coal-firedpower-plants-in-usa.html
5.
Langa
,
P.
,
Denesb
,
F.
, and
Hegely
,
L.
,
2017
, “
Comparison of Different Amine Solvents for the Absorption of CO2
,”
Chem. Eng. Trans.
,
61
, pp.
1105
1110
.https://www.aidic.it/cet/17/61/182.pdf
6.
Jones
,
D. A.
,
2018
, “
Technoeconomic Evaluation of MEA vs. Mixed Amines and a Catalyst System for CO2 Removal at Near-Commercial Scale at Duke Energy Gibson 3 Plant and Duke Energy Buck NGCC Plant
,” Lawrence Livermore National Laboratory, Report No. LLNL-TR-758732.
7.
Brandl
,
P.
,
Bui
,
M.
,
Hallett
,
J. P.
, and
Mac Dowell
,
N.
,
2021
, “
Beyond 90% Capture: Possible, but at What Cost?
,”
Int. J. Greenhouse Gas Control
,
105
, p.
103239
.10.1016/j.ijggc.2020.103239
8.
Front-End Engineering Design (FEED)
,
2021
, “
Study for a Carbon Capture Plant Retrofit to a Natural Gas-Fired Gas Turbine Combined Cycle Power Plant
,” Bechtel National, Inc., Report No. DE-FE0031848.
9.
OSTI.GOV
,
2009
, “
CO2 Capture Facility at Kårstø, Norway - Front End Engineering and Design (FEED) Study Report
,” Bechtel Overseas Corporation (for Gassnova), Report No. 25474-000-30R-G04G-00001, Revision 1, Released for Public Distribution on 3 April 2019, 10112936-PB-G-DOC-0005.
10.
Dennis
,
R.
,
2019
, “
Presentation at the ASME, IGTI 2019 Turbo Expo – Future Power Systems Session (Unpublished)
,” U.S. DOE Netl, Phoenix, AZ, June 18.
11.
Dincer
,
I.
, and
Acar
,
C.
,
2015
, “
Review and Evaluation of Hydrogen Production Methods for Better Sustainability
,”
Int. J. Hydrogen Energy
,
40
(
34
), pp.
11094
11111
.10.1016/j.ijhydene.2014.12.035
12.
Higman
,
C.
, and
van der Burgt
,
M.
,
2008
,
Gasification (Second Edition)
,
Gulf Professional Publishing, Imprint of Elsevier
,
Oxford, UK
.
13.
Kaufman
,
E.
,
2003
, “
Considerations When Burning Ash-Bearing Fuels in Heavy-Duty Gas Turbines
,” General Electric Reference Document GER-3764A.
14.
Combined Cycle Journal
, 2009, “Kalaeloa Cogeneration Plant – Continual Improvement Defines Black Oil-Fired Combined Cycle,” Combined Cycle Journal, 2Q-2009.
15.
Black
,
J.
,
Matuszewski
,
M.
, and
Lewis
,
E.
,
2012
, “
Greenhouse Gas Reductions in the Power Industry Using Domestic Coal and Biomass - Volume 1: IGCC
,” Report No. NETL/DOE-2012/1546.
16.
Sandia National Laboratories
,
2011
, “
Characterization and Assessment of Novel Bulk Storage Technologies: A Study for the DOE Energy Storage Systems Program
,” Report No. SAND
2011
3700
.
17.
Barbour
,
E.
,
Mignard
,
D.
,
Ding
,
Y.
, and
Li
,
Y.
,
2015
, “
Adiabatic Compressed Air Energy Storage With Packed Bed Thermal Energy Storage
,”
Appl. Energy
,
155
, pp.
804
815
.10.1016/j.apenergy.2015.06.019
18.
Young
,
D.
, and
Lewis
,
C.
,
2021
, “
Hydrostatically Compensated CAES System Having an Elevated Compensation Liquid Reservoir
,” U.S. Patent No. 2021/0388810 A1.
19.
Hamdy
,
S.
,
Moser
,
F.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2019
, “
Exergy-Based and Economic Evaluation of Liquefaction Processes for Cryogenics Energy Storage
,”
Energies
,
12
(
3
), p.
493
.10.3390/en12030493
20.
Frutschi
,
H. U.
,
2005
,
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
,
ASME Press
,
New York
.
21.
Lee
,
J. C.
,
Campbell
,
J.
, Jr.
, and
Wright
,
D. E.
,
1980
, “
Closed-Cycle Gas Turbine Working Fuels
,”
ASME
Paper No. 80-GT-135. 10.1115/80-GT-135
22.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
, p.
111703
.10.1115/1.4007199
23.
Fleming
,
D.
,
Holschuh
,
T.
,
Conboy
,
T.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Scaling Considerations for a Multi-Megawatt Class Supercritical CO2 Brayton Cycle and Path Forward for Commercialization
,”
ASME
Paper No. GT2012-68484.10.1115/GT2012-68484
24.
Held
,
T. J.
,
2014
, “
Initial Test Results of a Megawatt Class Supercritical CO2 Heat Engine
,”
The 4th International Symposium - Supercritical CO2 Power Cycles
, Pittsburgh, PA, Sept. 9–10.
25.
Johnson
,
G. A.
,
McDowell
,
M. W.
,
O'Connor
,
G. M.
,
Chandrashekhar
,
G. S.
, and
Subbaraman
,
G.
,
2012
, “
Supercritical CO2 Cycle Development at Pratt & Whitney Rocketdyne
,”
ASME
Paper No. GT2012-70105. 10.1115/GT2012-70105
26.
van der Linden
,
S.
,
2007
, “
Closed Cycle Nuclear Plant Rated at 165 MW and 41% Efficiency
,” Gas Turbine World, March-April.
27.
Hejzlar
,
P.
,
Driscoll
,
M. J.
,
Dostal
,
V.
,
Dumaz
,
P.
,
Poullennec
,
G.
, and
Alpy
,
N.
,
2006
, “
Assessment of Gas Cooled Fast Reactor With Indirect Supercritical CO2 Cycle
,”
Nucl. Eng. Technol.
,
38
(
2
), pp.
109
118
.https://www.researchgate.net/publication/263623655_Assessment_of_gas_cooled_fast_reactor_with_indirect_supercritical_CO2_cycle
28.
Moore
,
J.
,
2018
, “
Development of a High-Efficiency Hot Gas Turbo-Expander and Low-Cost Heat Exchangers for Optimized CSP Supercritical CO2 Operation
,” SwRI, Report No. DE-EE0005804.
29.
Utamura
,
M.
,
2010
, “
Thermodynamic Analysis of Part-Flow Cycle Supercritical CO2 Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
132
, pp.
111701
111711
.10.1115/1.4001052
30.
Sifat
,
N. S.
, and
Haseli
,
Y.
,
2018
, “
Thermodynamic Modeling of Allam Cycle
,” IMECE2018,
International Mechanical Engineering Congress and Exposition
, Pittsburgh, PA, Nov. 9–15, p.
88079
.
31.
Allam
,
R.
,
Martin
,
S.
,
Forrest
,
B.
,
Fetvedt
,
J.
,
Lu
,
X.
,
Freed
,
D.
,
Brown
,
G. W.
, Jr.
,
Sasaki
,
T.
,
Itoh
,
M.
, and
Manning
,
J.
,
2017
, “
Demonstration of the Allam Cycle: An Update on the Development Status of a High Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture
,”
Energy Proc.
,
114
(
2017
), pp.
5948
5966
.10.1016/j.egypro.2017.03.1731
32.
Manso
,
R. L.
,
2013
, “
CO2 Capture in Power Plants Using the Oxy-Combustion Principle
,”
M.S. thesis
,
Norwegian University of Science and Technology
,
Norway
.
33.
Gülen
,
S. C.
,
2022
,
Gas & Steam Turbine Power Plants – Applications in Sustainable Power
,
Cambridge University Press
,
Cambridge, UK
.
34.
Luis
,
P.
,
2016
, “
Use of Monoethanolamine (MEA) for CO2 Capture in a Global Scenario: Consequences and Alternatives
,”
Desalination
,
380
(
2016
), pp.
93
99
.10.1016/j.desal.2015.08.004
35.
Gülen
,
S. C.
,
2016
, “
Étude on Gas Turbine Combined Cycle Power Plant – Next 20 Years
,”
ASME J. Eng. Gas Turbines Power
,
138
, p.
051701
.10.1115/1.4031477
36.
Gülen
,
S. C.
,
2019
,
Gas Turbines for Electric Power Generation
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.