Abstract

The flow fields and infrared signatures of a turbofan engine axisymmetric exhaust system with or without afterburning have been numerically investigated. The flow fields of the exhaust system have been calculated using a commercial numerical simulation software, whereas the infrared signatures have been calculated by the software nuaa-ir (numerical analysis of aircraft's infrared signature) developed by the current authors' research team. The spectral and integral radiation intensity in the waveband of 3–5 μm of the axisymmetric exhaust system have been calculated and analyzed. The results show that the thrust of the axisymmetric exhaust system with afterburning is increased by 55% as compared with nonafterburning. The main infrared radiation source of the exhaust system with afterburning is the plume. The infrared radiation of the plume accounts for 65% of the total infrared radiation of the exhaust system in the downstream axial direction. The maximum integral radiation intensity of the exhaust system with afterburning is nearly seventeen times that of without afterburning. The integral radiation intensity of the exhaust system in the downstream axial direction with afterburning is about four times that of without afterburning. The integral radiation intensity of the exhaust system in the lateral direction is about 54 times higher than that without afterburning.

References

1.
Decher
,
R.
,
1981
, “
Infrared Emissions From Turbofans With High Aspect Ratio Nozzles
,”
J. Aircr.
,
18
(
12
), pp.
1025
1031
.10.2514/3.44742
2.
Johansson
,
M.
, and
Dalenbring
,
M.
,
2006
, “
Calculation of IR Signatures From Airborne Vehicles
,”
Proc. SPIE Int. Soc. Opt. Eng.
,
6228
(
5
), pp.
971
982
.10.1117/12.660108
3.
Xiaojuan
,
S.
, and
Honghu
,
J.
,
2015
, “
Infrared Radiation Characteristics of Axisymmetrical Ejector Convergent Nozzle in Turbofan Engine
,”
J. Aerosp. Power
,
30
(
4
), pp.
784
792
.
4.
Wen
,
C.
,
Li
,
Z.
,
Zhanxue
,
W.
,
Xiaolin
,
S.
, and
Jingwei
,
S.
,
2018
, “
Effects of Geometric Parameters on Infrared Signature of Serpentine Nozzle
,”
J. Propul. Technol.
,
39
(
9
), pp.
1974
1985
.10.13675/j.cnki.tjjs.2018.09.007
5.
Stevens
,
H. L.
,
1978
, “
F-15/Nonaxisymmetric Nozzle System Integration Study Support Program
,” NASA, Washington, DC, Report No.
NASA CR-135252
.https://ntrs.nasa.gov/citations/19780010127
6.
Banken
,
G. J.
,
Cornette
,
W. M.
, and
Gleason
,
K. M.
,
1980
, “
Investigation of Infrared Characteristics of Three Generic Nozzle Concepts
,”
AIAA
Paper No. 1980-1160.10.2514/6.1980-1160
7.
Xiaojuan
,
S.
, and
Honghu
,
J.
,
2020
, “
Numerical Investigation of Influence of Two-Dimensional Convergent and Divergent Nozzle's Design Parameters on Infrared Characteristics
,”
J. Aerosp. Power
,
35
(
5
), pp.
944
955
.
8.
Jian
,
L.
, and
Honghu
,
J.
,
2018
, “
Experimental Investigation on Infrared Signatures of Axisymmetric Vectoring Exhaust Nozzle With Film Cooling and Low-Emissivity Coating
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
091203
.10.1115/1.4038813
9.
Lovett
,
J. A.
,
Brogan
,
T. P.
,
Philippona
,
D. S.
,
Keil
,
B. V.
, and
Thompson
,
T. V.
,
2004
, “
Development Needs for Advanced Afterburner Designs
,”
AIAA
Paper No. 2004-4192.10.2514/6.2004-4192
10.
Xiaochun
,
Z.
,
Yuchao
,
S.
, and
Tao
,
L.
,
2014
, “
Summary of Advanced Afterburner Design Technology
,”
Aeroengine
,
40
(
2
), pp.
24
30
.
11.
Jianhua
,
S.
,
2013
,
Low-Observable Technologies of Aircraft
,
Aviation Industry Press
,
Beijing, China
.
12.
Unaune
,
S. V.
, and
Ganesan
,
V.
,
2004
, “
Flow Field Studies in an Afterburner
,”
J. Inst. Eng.
,
84
(
4
), pp.
165
170
.https://www.researchgate.net/publication/289426226_Flow_field_studies_in_an_afterburner
13.
Xiao
,
F.
,
Fujiang
,
Y.
, and
Zhihui
,
G.
,
2015
, “
Combustion Instability of Pilot Flame in a Pilot Bluff Body Stabilized Combustor
,”
Chin. J. Aeronaut.
,
28
(
6
), pp.
1606
1615
.10.1016/j.cja.2015.08.018
14.
Haitao
,
Z.
, and
Jianxing
,
Z.
,
2007
, “
Turbulent Combustion Flow Field Calculation for Afterburner With Heat Shield
,”
J. Aerosp. Power
,
22
(
8
), pp.
1241
1246
.https://www.researchgate.net/publication/296598442_Turbulent_combustion_flow_field_calculation_for_afterburner_with_heat_shied
15.
Nakaya
,
S.
,
Omi
,
K.
,
Okamoto
,
T.
,
Ikeda
,
Y.
,
Zhao
,
C.
,
Tsue
,
M.
, and
Taguchi
,
H.
,
2021
, “
Instability and Mode Transition Analysis of a Hydrogen-Rich Combustion in a Model Afterburner
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5933
5942
.10.1016/j.proci.2020.05.003
16.
Safdar
,
M. M.
,
Mufti
,
B.
, and
Masud
,
J.
, “
Numerical Modeling and Analysis of Afterburner Combustion of a Low Bypass Ratio Turbofan Engine
,”
AIAA
Paper No. 2020-0628.c1.10.2514/6.2020-0628
17.
Ebrahimi
,
H. B.
,
2006
, “
Overview of Gas Turbine Augmentor Design, Operation and Combustion Oscillation
,”
AIAA
Paper No. 2006-4916.10.2514/6.2006-4916
18.
Lubarsky
,
E.
,
Cross
,
C. N.
,
Cutright
,
J. T.
,
Zinn
,
B. T.
,
Knaus
,
D.
, and
Magari
,
P.
,
2008
, “
Novel Carbureted Flame Holder for Improved Afterburner Stability
,”
AIAA
Paper No. 2008-98.10.2514/6.2008-98
19.
Xiangzhong
,
J.
,
Yong
,
S.
,
Xingping
,
X.
,
Jingzhou
,
Z.
, and
Xiaoming
,
T.
,
2021
, “
Effects of Bypass Flow Distribution on Cold Flow Characteristics of Integrated Afterburner
,”
Energies
,
14
, p.
5842
.10.3390/en14185842
20.
Yuchao
,
S.
,
Zhixue
,
Z.
,
Jiangning
,
L.
, and
Xiaochun
,
Z.
,
2011
, “
Design and Numerical Research of Integrated Rear Frame and Afterburner
,”
Aeronaut. Sci. Technol.
, (
4
), pp.
71
73
.
21.
Xiao
,
Y.
, and
Amano
,
R. S.
,
2003
, “
A Study on Effective Heat Transfer Characteristics in an Afterburner With Ceramic Stabilizer
,”
AIAA
Paper No. 2003-338.10.2514/6.2003-338
22.
Yong
,
S.
,
Jingzhou
,
Z.
, and
Yameng
,
W.
,
2014
, “
Numerical Investigation on Aerodynamic and Combustion Performance of Chevron Mixer Inside an Afterburner
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
111501
.10.1115/1.4027604
23.
Bin
,
L.
,
Jingzhou
,
Z.
,
Yong
,
S.
, and
Xiaoming
,
H.
,
2017
, “
Model Experiment on Mixing and Combustion of Lobed Forced Mixer
,”
J. Nanjing Univ. Aeronaut. Astronaut.
,
49
(
3
), pp.
370
375
.
24.
Arai
,
T.
,
Sakaue
,
S.
,
Hayase
,
H.
,
Hiejima
,
T.
,
Sunami
,
T.
, and
Nishioka
,
M.
,
2011
, “
Streamwise Vortices Introduced by “Hyper-Mixer” on Supersonic Mixing
,”
AIAA
Paper No. 2011-2342.10.2514/6.2011-2342
25.
Xiaojuan
,
S.
,
Honghu
,
J.
, and
Ren
,
S.
,
2016
, “
Numerical Investigation of Geometric Parameters' Influence to Aerodynamic Performance of Two Dimensional Convergent and Divergent Nozzle
,”
J. Aerosp. Power
,
31
(
8
), pp.
1799
1810
.
26.
Huwei
,
D.
,
Yong
,
S.
,
Jiachun
,
G.
,
Jingzhou
,
Z.
, and
Tao
,
L.
,
2012
, “
Numerical Study and Verification on Combustion Characteristics of Afterburner With Chevron Mixer
,”
J. Aerosp. Power
,
27
(
8
), pp.
1718
1725
.https://www.researchgate.net/publication/286287995_Numerical_study_and_verification_on_combustion_characteristics_of_afterburner_with_chevron_mixer
27.
Hao
,
W.
,
Honghu
,
J.
, and
Haohao
,
L.
,
2019
, “
The Influence of Nozzle Deflection on Fluid Dynamic and Infrared Characteristics of a Two-Dimensional Convergent-Divergent Vectoring Exhaust System
,”
J. Aerosp. Eng.
,
233
(
12
), pp.
4646
4662
.10.1177/0954410019827176
28.
Ludwig
,
C. B.
,
Malkmus
,
W.
,
Reardon
,
J. E.
, and
Thomson
,
J. A. L.
,
1973
, “
Handbook of Infrared Radiation From Combustion Gases
,” NASA, Washington, DC, Report No.
NASA SP-3080
.https://ntrs.nasa.gov/citations/19730019075
29.
Wei
,
H.
, and
Honghu
,
J.
,
2012
, “
Computational Investigation of Infrared Radiation Characteristics of Exhaust System Based on BRDF
,”
Acta Aeronaut. Astronaut. Sin.
,
33
(
7
), pp.
1227
1235
.https://www.semanticscholar.org/paper/Computational-Investigation-of-Infrared-Radiation-Honghu/a10ceb34e79ea3bcfa71c08548d13fb3ef651817
30.
Jian
,
L.
, and
Honghu
,
J.
,
2018
, “
Investigation on Infrared Signature of Axisymmetric Vectoring Exhaust System With Infrared Suppressions
,”
J. Thermophys. Heat Transfer
,
32
(
3
), pp.
627
636
.10.2514/1.T5323
You do not currently have access to this content.