Abstract

Although the simultaneous production of heat and power, the so-called combined heat and power (CHP), is from a thermodynamic point of view still the most efficient energy conversion method, cogeneration units have nowadays problems to position themselves in the current and future energy market. The increasing renewable energy penetration requires CHP units to become more flexible, especially on their currently fixed heat-to-power ratio. Within this framework, micro-gas turbines (mGTs), as small-scale decentralized cogeneration units, offer opportunities. Since they use the recuperated Brayton cycle, they offer the theoretic option to adjust the internal heat streams to provide a flexible heat-to-power ratio as well as the unique feature of a tunable outlet temperature, making the unit feasible/interesting for a larger range of applications having a combined heat and power demand. Hence, in this paper, we assessed the impact of the use of a recuperator bypass for enhanced operational flexibility of mGT. In a first step, the optimal pathway for the recuperator bypass, i.e., cold or hot side bypass, is selected for a typical mGT, the Turbec T100 (currently commercially available as the AE-T100), considering both thermodynamics as well as technological feasibility. Moreover, the potential performance impact on the electrical and total efficiency is calculated as well as on the total available thermal power. In a second step, the specific performance of the option of using a recuperator bypass is assessed for two specific cases: flexible heat-to-power ratio at low temperature and high temperature, i.e., steam generation, cogeneration. Thermodynamic simulations show that the impact on the electric efficiency remains rather limited (maximal 6% absolute efficiency reduction for a 40% bypass ratio), while the available thermal energy and exergy increase significantly: up to 60% increase for thermal power and even 115% increase in the exergy content of the flue gases. Moreover, there is no distinct difference between cold or hot bypass, leaving the selection of the optimal bypass route a pure technical choice. Finally, considering the specific cases studied, simulation results show that heat-to-power ratio could be increased by more than 50% for all power outputs for the low temperature CHP applications, even resulting in a global efficiency increase, while for the high temperature case, recuperator bypass allows for a significant increase in steam production, at total efficiencies comparable to the separate production (i.e., boiler and grid), clearly highlighting the benefits and potential of a recuperator bypass.

References

1.
European Commission
,
2011
, “
The 2020 Climate and Energy Package
,” European Commission, Brussels, Belgium, accessed Nov. 22, 2022, https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2020-climate-energy-package_en
2.
European Commission
,
2014
, “
2030 framework for climate and energy policies
,” European Commission, Brussels, Belgium, accessed Nov. 22, 2022, https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2030-climate-energy-framework_en
3.
International Energy Agency (IEA),
2020
, “
Renewable 2020: Analysis and Forecast to 2025
,” International Energy Agency (IEA), Paris, France, accessed Apr. 2, 2021, https://www.iea.org/reports/renewables-2020
4.
International Energy Agency (IEA),
2020
, “
Hydrogen: More Efforts Needed
,” International Energy Agency (IEA), Paris, France, accessed Apr. 2, 2021, https://www.iea.org/reports/hydrogen#tracking-progress2020
5.
Burre
,
J.
,
Bongartz
,
D.
,
Brée
,
L.
,
Roh
,
K.
, and
Mitsos
,
A.
,
2020
, “
Power-to-x: Between Electricity Storage, e-Production, and Demand Side Management
,”
Chem. Ing. Tech.
,
92
(
1–2
), pp.
74
84
.10.1002/cite.201900102
6.
Sternberg
,
A.
, and
Bardow
,
A.
,
2015
, “
Power-to-What?–Environmental Assessment of Energy Storage Systems
,”
Energy Environ. Sci.
,
8
(
2
), pp.
389
400
.10.1039/C4EE03051F
7.
Brynolf
,
S.
,
Taljegard
,
M.
,
Grahn
,
M.
, and
Hansson
,
J.
,
2018
, “
Electrofuels for the Transport Sector: A Review of Production Costs
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
1887
1905
.10.1016/j.rser.2017.05.288
8.
European Commission
,
2014
. “
Strategic Energy Technology Plan
,” European Commission, Brussels, Belgium, accessed Apr. 1, 2021, https://ec.europa.eu/energy/topics/technology-and-innovation/strategic-energy-technology-plan_en
9.
Frost & Sullivan
,
2011
, “
Combined Heat and Power: Integrating Biomass Technologies in Buildings for Efficient Energy Consumption
,” San Antonio, TX.
10.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Bram
,
S.
,
Musin
,
F.
,
Parente
,
A.
, and
Contino
,
F.
,
2016
, “
Humidified Micro Gas Turbines for Domestic Users: An Economic and Primary Energy Savings Analysis
,”
Energy
,
117
(
2
), pp.
429
438
.10.1016/j.energy.2016.04.024
11.
U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Office of Power Technologies
,
2000
, “
Advanced Microturbine Systems – Program Plan for Fiscal Years 2000 Through 2006
,” accessed Sept. 14, 2014, http://www.energetics.com/resourcecenter/products/plans/samples/Documents/advanced_microturbine_plan.pdf
12.
Haile
,
S. M.
,
2003
, “
Materials for Fuel Cells
,”
Mater. Today
,
6
(
3
), pp.
24
29
.10.1016/S1369-7021(03)00331-6
13.
Movahed
,
P.
, and
Avami
,
A.
,
2020
, “
Techno-Economic Optimization of Biogas-Fueled Micro Gas Turbine Cogeneration Systems in Sewage Treatment Plant
,”
Energy Convers. Manage.
,
218
, p.
112965
.10.1016/j.enconman.2020.112965
14.
Basrawi
,
F.
,
Ibrahim
,
T. K.
,
Habib
,
K.
,
Yamada
,
T.
, and
Daing Idris
,
D. M. N.
,
2017
, “
Techno-Economic Performance of Biogas-Fueled Micro Gas Turbine Cogeneration Systems in Sewage Treatment Plants: Effect of Prime Mover Generation Capacity
,”
Energy
,
124
, pp.
238
248
.10.1016/j.energy.2017.02.066
15.
Guo
,
Y.
,
Yu
,
Z.
,
Li
,
G.
, and
Zhao
,
H.
,
2020
, “
Performance Assessment and Optimization of an Integrated Solid Oxide Fuel Cell-Gas Turbine Cogeneration System
,”
Int. J. Hydrogen Energy
,
45
(
35
), pp.
17702
17716
.10.1016/j.ijhydene.2020.04.210
16.
Cameretti
,
M. C.
,
De Robbio
,
R.
,
Pirone
,
E.
, and
Tuccillo
,
R.
,
2017
, “
Thermo-Economic Analysis of a Hybrid Solar Micro Gas Turbine Power Plant
,”
Energy Procedia
,
126
, pp.
667
674
.10.1016/j.egypro.2017.08.295
17.
Delattin
,
F.
,
Bram
,
S.
,
Knoops
,
S.
, and
De Ruyck
,
J.
,
2008
, “
Effects of Steam Injection on Microturbine Efficiency and Performance
,”
Energy
,
33
(
2
), pp.
241
247
.10.1016/j.energy.2007.09.007
18.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Parente
,
A.
, and
Contino
,
F.
,
2018
, “
Towards Higher Micro Gas Turbine Efficiency and Flexibility—Humidified mGTs: A Review
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081702
.10.1115/1.4038365
19.
De Ruyck
,
J.
,
Bram
,
S.
, and
Allard
,
G.
,
1997
, “
REVAP® Cycle: A New Evaporative Cycle Without Saturation Tower
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
893
897
.10.1115/1.2817070
20.
Wicker
,
K.
,
2003
, “
Life Below the Wet Bulb: The Maisotsenko Cycle
,”
Power
,
147
(
9
), p.
29
.https://www.yumpu.com/en/document/read/12202608/life-below-the-wet-bulb-the-maisotsenkocycle-coolerado
21.
Lee
,
J. J.
,
Jeon
,
M. S.
, and
Kim
,
T. S.
,
2010
, “
The Influence of Water and Steam Injection on the Performance of a Recuperated Cycle Microturbine for Combined Heat and Power Application
,”
Appl. Energy
,
87
(
4
), pp.
1307
1316
.10.1016/j.apenergy.2009.07.012
22.
Parente
,
J.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2003
, “
Micro Humid Air Cycle: Part A–Thermodynamic and Technical Aspects
,”
ASME
Paper No. GT2003-38326. 10.1115/GT2003-38326
23.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2012
, “
Steam Injection Experiments in a Microturbine—A Thermodynamic Performance Analysis
,”
Appl. Energy
,
97
, pp.
569
576
.10.1016/j.apenergy.2012.01.051
24.
Xu
,
Z.
,
Lu
,
Y.
,
Wang
,
B.
,
Zhao
,
L.
,
Chen
,
C.
, and
Xiao
,
Y.
,
2019
, “
Experimental Evaluation of 100 kW Grade Micro Humid Air Turbine Cycles Converted From a Microturbine
,”
Energy
,
175
, pp.
687
693
.10.1016/j.energy.2019.03.036
25.
Stathopoulos
,
P.
, and
Paschereit
,
C. O.
,
2016
, “
Operational Strategies of Wet Cycle Micro Gas Turbines and Their Economic Evaluation
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
122301
.10.1115/1.4033999
26.
Van Nest
,
F. H.
,
1959
, “
Control of Heat Supply to Heat Recovery Boiler of Regenerative Cycle Gas Turbine Powerplant
,”
U.S. Patent No. 2,914,917.
27.
Ibrahim
,
O.
,
Zimmermann
,
P.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
Gerhard
,
B.
, and
Steinbach
,
C.
,
2004
, “
A Microturbine Operating With Variable Heat Output
,”
ASME
Paper No. GT2004-53011. 10.1115/GT2004-53011
28.
Kang
,
S.
,
Kim
,
J.
, and
Kim
,
T.
,
2013
, “
Influence of Steam Injection and Hot Gas Bypass on the Performance and Operation of a Combined Heat and Power System Using a Recuperative Cycle Gas Turbine
,”
J. Mech. Sci. Technol.
,
27
(
8
), pp.
2547
2555
.10.1007/s12206-013-0639-0
29.
Sadeghi
,
E.
,
Khaledi
,
H.
, and
Ghofrani
,
M. B.
,
2006
, “
Thermodynamic Analysis of Different Configurations for Microturbine Cycles in Simple and Cogeneration Systems
,”
ASME
Paper No. GT2006-90237. 10.1115/GT2006-90237
30.
Rist
,
J. F.
,
Dias
,
M. F.
,
Palman
,
M.
,
Zelazo
,
D.
, and
Cukurel
,
B.
,
2017
, “
Economic Dispatch of a Single Micro-Gas Turbine Under CHP Operation
,”
Appl. Energy
,
200
, pp.
1
18
.10.1016/j.apenergy.2017.05.064
31.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Giorgetti
,
S.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2016
, “
Exhaust Gas Recirculation on Humidified Flexible Micro Gas Turbines for Carbon Capture Applications
,”
ASME
Paper No. GT2016-57265. 10.1115/GT2016-57265
32.
Renzi
,
M.
,
Caresana
,
F.
,
Pelagalli
,
L.
, and
Comodi
,
G.
,
2014
, “
Enhancing Micro Gas Turbine Performance Through Fogging Technique: Experimental Analysis
,”
Appl. Energy
,
135
, pp.
165
173
.10.1016/j.apenergy.2014.08.084
33.
Turbec
,
A. B.
,
2000
–2001,
T100 Microturbine CHP System: Technical Description, Version 4.0
, Malmö, Sweden.
34.
Kim
,
M. J.
,
Kim
,
J. H.
, and
Kim
,
T. S.
,
2018
, “
The Effects of Internal Leakage on the Performance of a Micro Gas Turbine
,”
Appl. Energy
,
212
, pp.
175
184
.10.1016/j.apenergy.2017.12.029
35.
De Paepe
,
W.
,
Montero Carrero
,
M.
,
Bram
,
S.
,
Contino
,
F.
, and
Parente
,
A.
,
2017
, “
Waste Heat Recovery Optimization in Micro Gas Turbine Applications Using Advanced Humidified Gas Turbine Cycle Concepts
,”
Appl. Energy
,
207
, pp.
218
229
.10.1016/j.apenergy.2017.06.001
36.
Lagerström
,
G.
, and
Xie
,
M.
,
2002
, “
High Performance and Cost Effective Recuperator for Micro-Gas Turbines
,”
ASME
Paper No. GT2002-30402. 10.1115/GT2002-30402
37.
Xiao
,
G.
,
Yang
,
T.
,
Liu
,
H.
,
Ni
,
D.
,
Ferrari
,
M. L.
,
Li
,
M.
,
Luo
,
Z.
,
Cen
,
K.
, and
Ni
,
M.
,
2017
, “
Recuperators for Micro Gas Turbines: A Review
,”
Appl. Energy
,
197
, pp.
83
99
.10.1016/j.apenergy.2017.03.095
38.
O'Brien
,
J. E.
, and
Sparrow
,
E. M.
,
1982
, “
Corrugated-Duct Heat Transfer, Pressure Drop, and Flow Visualization
,”
ASME J. Heat Transfer
,
104
(
3
), pp.
410
416
.10.1115/1.3245108
39.
Sparrow
,
E.
, and
Comb
,
J.
,
1983
, “
Effect of Interwall Spacing and Fluid Flow Inlet Conditions on a Corrugated-Wall Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
26
(
7
), pp.
993
1005
.10.1016/S0017-9310(83)80124-0
40.
Vlasogiannis
,
P.
,
Karagiannis
,
G.
,
Argyropoulos
,
P.
, and
Bontozoglou
,
V.
,
2002
, “
Air-Water Two-Phase Flow and Heat Transfer in a Plate Heat Exchanger
,”
Int. J. Multiphase Flow
,
28
(
5
), pp.
757
772
.10.1016/S0301-9322(02)00010-1
41.
Capstone
,
2003
, “
Product Datasheet: Capstone C30
,” accessed Nov. 22, 2022, http://www.gasturbineworld.co.uk/capstonemicroturbine.html
42.
Capstone
,
2003
, “
Product Datasheet: Capstone C65
,” accessed Nov. 22, 2022, https://www.capstonegreenenergy.com/products/energy-generation-technologies/capstone-microturbines/c65
43.
Capstone
,
2009
, “
Product Datasheet: Capstone C200
,” accessed Nov. 22, 2022, https://www.capstonegreenenergy.com/products/energy-generation-technologies/capstone-microturbines/c200s
44.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Magnusson
,
J.
,
Parente
,
A.
,
Bram
,
S.
, and
Contino
,
F.
,
2017
, “
Experimental Characterisation of a Micro Humid Air Turbine: Assessment of the Thermodynamic Performance
,”
Appl. Therm. Eng.
,
118
, pp.
796
806
.10.1016/j.applthermaleng.2017.03.017
45.
Centrica Business Solutions
,
2017
, “
Natural Gas CHP Range Guide 2017 UK & Ireland
,” Centrica Business Solutions, accessed Nov. 22, 2022, https://cdn.centricabusinesssolutions.com/sites/g/files/qehiga126/files/CBS_DS_Natural%20Gas%20Range_Datasheet_A4_LS_RGB.pdf
46.
Blondeau
,
J.
, and
Mertens
,
J.
,
2019
, “
Impact of Intermittent Renewable Energy Production on Specific CO2 and NOx Emissions From Large Scale Gas-Fired Combined Cycles
,”
J. Cleaner Prod.
,
221
, pp.
261
270
.10.1016/j.jclepro.2019.02.182
47.
McDonald
,
C. F.
,
2003
, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
,
23
(
12
), pp.
1463
1487
.10.1016/S1359-4311(03)00083-8
48.
Simpson
,
M. C.
,
Chatzopoulou
,
M. A.
,
Oyewunmi
,
O. A.
,
Le Brun
,
N.
,
Sapin
,
P.
, and
Markides
,
C. N.
,
2019
, “
Technoeconomic Analysis of Internal Combustion Engine — Organic Rankine Cycle Systems for Combined Heat and Power in Energy-Intensive Buildings
,”
Appl. Energy
,
253
, p.
113462
.10.1016/j.apenergy.2019.113462
49.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
,
Contino
,
F.
, and
De Ruyck
,
J.
,
2013
, “
A Study on the Performance of Steam Injection in a Typical Micro Gas Turbine
,”
ASME
Paper No. GT2013-94569. 10.1115/GT2013-94569
You do not currently have access to this content.