Abstract

In this work, we perform an experimental study of the combustion of pure hydrogen in the sequential stage of a generic combustor. This academic test rig is a simplified model of an industrial sequential combustor. The sequential fuel is injected using different injector geometries. The composition and temperature of the hot stream at the inlet of the sequential burner are defined by the mass flows of the hot combustion products from the first stage (30 kW natural gas–air flame with equivalence ratio of 0.7) and of the dilution air. This temperature is varied between 1100 K and 850 K by modifying the dilution air mass flow in order to study the different combustion regimes of the sequential hydrogen flame. High-speed imaging of OH radicals chemiluminescence is performed with optical emission spectroscopy to measure vitiated gas temperatures. In particular, we investigate the transition from a flame anchored in the sequential combustion chamber, to the situation where it stabilizes upstream into the mixing section, when the inlet flow temperature is increased. Of particular interest is the increasing rate of formation of auto-ignition kernels in this transition process. The underlying combustion regime change is analyzed with 0D reactor simulations, and the limitations of such a simplified low-order model of the flame location are discussed. The effects and importance of the mixing process between fresh fuel and the hot vitiated coflow are examined. Two different injectors are compared under the same operating conditions that create different flow structures along the mixing section. As a result of that, they provide different degrees of mixing between the hydrogen and the hot vitiated flow and allow to demonstrate the impact of mixing quality on the flame morphology.

References

1.
Güthe
,
F.
,
Hellat
,
J.
, and
Flohr
,
P.
,
2009
, “
The Reheat Concept: The Proven Pathway to Ultralow Emissions and High Efficiency and Flexibility
,”
AMSE J. Eng. Gas Turbines Power
,
131
(
2
), p.
021503
.10.1115/1.2836613
2.
Düsing
,
K. M.
,
Ciani
,
A.
, and
Eroglu
,
A.
,
2011
, “
Effect of Mixing Quality on NOx Emissions in Reheat Combustion of GT24 and GT26 Engines
,”
ASME
Paper No. GT2011-45676.10.1115/GT2011-45676
3.
Düsing
,
K. M.
,
Ciani
,
A.
,
Benz
,
U.
,
Eroglu
,
A.
, and
Knapp
,
K.
,
2013
, “
Development of GT24 and GT26 (upgrades 2011) Reheat Combustors, Achieving Reduced Emissions and Increased Fuel Flexibility
,”
ASME
Paper No. GT2013-95437.10.1115/GT2013-95437
4.
Pennell
,
D. A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Granet
,
V.
,
Singla
,
G.
,
Thorpe
,
S.
,
Wickstroem
,
A.
,
Oumejjoud
,
K.
, and
Yaquinto
,
M.
,
2017
, “
An Introduction to the Ansaldo GT36 Constant Pressure Sequential Combustor
,”
ASME
Paper No. GT2017-64790.10.1115/GT2017-64790
5.
Ciani
,
A.
,
Bothien
,
M.
,
Bunkute
,
B.
,
Wood
,
J.
, and
Früchtel
,
G.
,
2019
, “
Superior Fuel and Operational Flexibility of Sequential Combustion in Ansaldo Energia Gas Turbines
,”
J. Global Power Propul. Soc.
,
3
, pp.
630
638
.10.33737/jgpps/110717
6.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Sequential Combustion in Gas Turbines: The Key Technology for Burning High Hydrogen Contents With Low Emissions
,”
ASME
Paper No. GT2019-90798.10.1115/GT2019-90798
7.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
J. P.
, and
Fruechtel
,
G.
,
2019
, “
Toward Decarbonized Power Generation With Gas Turbines by Using Sequential Combustion for Burning Hydrogen
,”
AMSE J. Eng. Gas Turbines Power
,
141
(
12
), p.
121013
.10.1115/1.4045256
8.
Ciani
,
A.
,
Wood
,
J. P.
,
Wickström
,
A.
,
Rørtveit
,
G. J.
,
Steeneveldt
,
R.
,
Pettersen
,
J.
,
Wortmann
,
N.
, and
Bothien
,
M. R.
,
2020
, “
Sequential Combustion in Ansaldo Energia Gas Turbines: The Technology Enabler for CO2-Free, Highly Efficient Power Production Based on Hydrogen
,”
ASME
Paper No. GT2020-14794.10.1115/GT2020-14794
9.
Ciani
,
A.
,
Wood
,
J.
,
Maurer
,
M.
,
Bunkute
,
B.
,
Pennell
,
D.
,
Riazantsev
,
S.
, and
Früchtel
,
G.
,
2021
, “
Center Body Burner for Sequential Combustion: Superior Performance at Lower Emissions
,”
ASME
Paper No. GT2021-59074.10.1115/GT2021-59074
10.
Solana-Pérez
,
R.
,
Miniero
,
L.
,
Shcherbanev
,
S.
,
Bothien
,
M.
, and
Noiray
,
N.
,
2020
, “
Morphology and Dynamics of a Premixed Hydrogen-Methane-Air Jet Flame in Hot Vitiated Turbulent Crossflow
,”
ASME
Paper No. GT2020-16282.10.1115/GT2020-16282
11.
Solana-Pérez
,
R.
,
Schulz
,
O.
, and
Noiray
,
N.
,
2021
, “
Simulation of the Self-Ignition of a Cold Premixed Ethylene-Air Jet in Hot Vitiated Crossflow
,”
Flow, Turbul. Combust.
,
106
(
4
), pp.
1295
1311
.10.1007/s10494-020-00212-3
12.
Schulz
,
O.
, and
Noiray
,
N.
,
2018
, “
Autoignition Flame Dynamics in Sequential Combustors
,”
Combust. Flame
,
192
, pp.
86
100
.10.1016/j.combustflame.2018.01.046
13.
Ebi
,
D.
,
Doll
,
U.
,
Schulz
,
O.
,
Xiong
,
Y.
, and
Noiray
,
N.
,
2019
, “
Ignition of a Sequential Combustor: Evidence of Flame Propagation in the Autoignitable Mixture
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5013
5020
.10.1016/j.proci.2018.06.068
14.
Schulz
,
O.
, and
Noiray
,
N.
,
2019
, “
Combustion Regimes in Sequential Combustors: Flame Propagation and Autoignition at Elevated Temperature and Pressure
,”
Combust. Flame
,
205
, pp.
253
268
.10.1016/j.combustflame.2019.03.014
15.
Habisreuther
,
P.
,
Galeazzo
,
F. C. C.
,
Prathap
,
C.
, and
Zarzalis
,
N.
,
2013
, “
Structure of Laminar Premixed Flames of Methane Near the Auto-Ignition Limit
,”
Combust. Flame
,
160
(
12
), pp.
2770
2782
.10.1016/j.combustflame.2013.06.023
16.
Krisman
,
A.
,
Mounaïm-Rousselle
,
C.
,
Sivaramakrishnan
,
R.
,
Miller
,
J. A.
, and
Chen
,
J. H.
,
2019
, “
Reference Natural Gas Flames at Nominally Autoignitive Engine-Relevant Conditions
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1631
1638
.10.1016/j.proci.2018.06.050
17.
Berger
,
F. M.
,
Hummel
,
T.
,
Romero Vega
,
P.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
A Novel Reheat Combustor Experiment for the Analysis of High-Frequency Flame Dynamics: Concept and Experimental Validation
,”
ASME
Paper No. GT2018-77101.10.1115/GT2018-77101
18.
Zellhuber
,
M.
,
Meraner
,
C.
,
Kulkarni
,
R.
,
Polifke
,
W.
, and
Schuermans
,
B.
,
2013
, “
Large Eddy Simulation of Flame Response to Transverse Acoustic Excitation in a Model Reheat Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091508
.10.1115/1.4024940
19.
Tautschnig
,
G.
,
Haner
,
E.-M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2014
, “
Experimental and Numerical Investigation of Confined Jets in Hot Co-Flow
,”
ASME
Paper No. GT2014-25843.10.1115/GT2014-25843
20.
Scarpato
,
A.
,
Zander
,
L.
,
Kulkarni
,
R.
, and
Schuermans
,
B.
,
2016
, “
Identification of Multi-Parameter Flame Transfer Function for a Reheat Combustor
,”
ASME
Paper No. GT2016-57699.10.1115/GT2016-57699
21.
Bothien
,
M.
,
Lauper
,
D.
,
Yang
,
Y.
, and
Scarpato
,
A.
,
2019
, “
Reconstruction and Analysis of the Acoustic Transfer Matrix of a Reheat Flame From Large-Eddy Simulations
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021018
.10.1115/1.4041151
22.
Aditya
,
K.
,
Gruber
,
A.
,
Xu
,
C.
,
Lu
,
T.
,
Krisman
,
A.
,
Bothien
,
M. R.
, and
Chen
,
J. H.
,
2019
, “
Direct Numerical Simulation of Flame Stabilization Assisted by Autoignition in a Reheat Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2635
2642
.10.1016/j.proci.2018.06.084
23.
Gruber
,
A.
,
Bothien
,
M. R.
,
Ciani
,
A.
,
Aditya
,
K.
,
Chen
,
J. H.
, and
Williams
,
F. A.
,
2021
, “
Direct Numerical Simulation of Hydrogen Combustion at Auto-Ignitive Conditions: Ignition, Stability and Turbulent Reaction-Front Velocity
,”
Combust. Flame
,
229
, p.
111385
.10.1016/j.combustflame.2021.02.031
24.
Fleck
,
J.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2012
, “
Autoignition Limits of Hydrogen at Relevant Reheat Combustor Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041502
.10.1115/1.4004500
25.
Schmalhofer
,
C. A.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2017
, “
Influence of Carrier Air Preheating on Autoignition of Inline-Injected Hydrogen-Nitrogen Mixtures in Vitiated Air of High Temperature
,”
ASME
Paper No. GT2017-63249.10.1115/GT2017-63249
26.
Schmalhofer
,
C. A.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2018
, “
Influence of Autoignition Kernel Development on the Flame Stabilisation of Hydrogen-Nitrogen Mixtures in Vitiated Air of High Temperature
,”
ASME
Paper No. GT2018-75483.10.1115/GT2018-75483
27.
Baukal
,
C.
, and
Eleazer
,
P.
,
1998
, “
Quantifying Nox for Industrial Combustion Processes
,”
J. Air Waste Manage. Assoc.
,
48
(
1
), pp.
52
58
.10.1080/10473289.1998.10463664
28.
Laux
,
C. O.
,
Spence
,
T.
,
Kruger
,
C.
, and
Zare
,
R.
,
2003
, “
Optical Diagnostics of Atmospheric Pressure Air Plasmas
,”
Plasma Sources Sci. Technol.
,
12
(
2
), pp.
125
138
.10.1088/0963-0252/12/2/301
29.
Goodwin
,
D.
,
Moffat
,
H.
, and
Speth
,
R.
,
2009
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Caltech, Pasadena, CA.
30.
Mastorakos
,
E.
,
Baritaud
,
T.
, and
Poinsot
,
T.
,
1997
, “
Numerical Simulations of Autoignition in Turbulent Mixing Flows
,”
Combust. Flame
,
109
(
1–2
), pp.
198
223
.10.1016/S0010-2180(96)00149-6
31.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
You do not currently have access to this content.