Abstract

The acoustic interaction of fan-rotor wakes with the downstream stator vanes is considered as an important noise source of an aircraft engine. The turbulence induced by the rotor generates a stochastic acoustic source that appears as broadband noise in the acoustic spectrum. During the preliminary design phase of an engine, established meanline and throughflow solvers usually do not resolve turbulence and associated unsteady flow parameters. But such solvers provide rotor pressure losses that can be used to estimate the mean and turbulent rotor wakes. A crucial step is the deduction of turbulence parameters from the mean wakes. A semi-empirical model for rotor-wake turbulence estimation is presented in this paper. The meanline method and the throughflow solver are compared to three-dimensional computational flow simulations investigating the capabilities of the different solvers to provide flow data for broadband wake interaction noise prediction. The methods are applied to a representative modern fan stage at a comprehensive number of operating points, comprising several speed lines from surge to choking conditions. Microphone measurements are consulted to assess the noise predictions. The evaluation confirms the applicability of the meanline and throughflow method in combination with the turbulence model for broadband noise estimation during the preliminary design phase. The underestimated turbulence in the tip region of the fan is found to be negligible even during off-design conditions.

References

1.
Moreau
,
S.
,
2018
, “
Turbomachinery-Related Aeroacoustic Modelling and Simulation
,”
Proceedings of 17th International Conference on Fluid Flow Technologies
, Budapest, Hungary, Sept. 4–7, pp.
1
15
.https://www.researchgate.net/publication/327388299_Turbomachineryrelated_aeroacoustic_modelling_and_simulation
2.
Moreau
,
S.
,
2019
, “
Turbomachinery Noise Predictions: Present and Future
,”
Acoustics
,
1
(
1
), pp.
92
116
.10.3390/acoustics1010008
3.
Moreau
,
S.
, and
Roger
,
M.
,
2018
, “
Advanced Noise Modeling for Future Propulsion Systems
,”
Int. J. Aeroacoustics
,
17
(
6–8
), pp.
576
599
.10.1177/1475472X18789005
4.
Peake
,
N.
, and
Parry
,
A. B.
,
2012
, “
Modern Challenges Facing Turbomachinery Aeroacoustics
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
227
248
.10.1146/annurev-fluid-120710-101231
5.
Meier zu Ummeln
,
R.
, and
Moreau
,
A.
,
2020
, “
Estimation of Turbulence in Fan-Rotor Wakes for Broadband Noise Prediction During Acoustic Preliminary Design
,”
AIAA
Paper No. 2020-2566.10.2514/6.2020-2566
6.
Moreau
,
A.
,
2016
, “
A Unified Analytical Approach for the Acoustic Conceptual Design of Fans of Modern Aero-Engines
,”
Doctoral thesis
,
Technische Universität Berlin
,
Berlin, Germany
.https://www.researchgate.net/publication/323251091_A_unified_analytical_approach_for_the_acoustic_conceptual_design_of_fans_of_modern_aero-engines
7.
Kissner
,
C.
,
Guérin
,
S.
,
Seeler
,
P.
,
Billson
,
M.
,
Chaitanya
,
P.
,
Carrasco Laraña
,
P.
,
de Laborderie
,
H.
,
François
,
B.
,
Lefarth
,
K.
,
Lewis
,
D.
,
Montero Villar
,
G.
, and
Nodé-Langlois
,
T.
,
2020
, “
ACAT1 Benchmark of RANS-Informed Analytical Methods for Fan Broadband Noise Prediction–Part I–Influence of the RANS Simulation
,”
Acoustics
,
2
(
3
), pp.
539
578
.10.3390/acoustics2030029
8.
Guérin
,
S.
,
Kissner
,
C.
,
Seeler
,
P.
,
Blázquez
,
R.
,
Carrasco Laraña
,
P.
,
de Laborderie
,
H.
,
Lewis
,
D.
,
Chaitanya
,
P.
,
Polacsek
,
C.
, and
Thisse
,
J.
,
2020
, “
ACAT1 Benchmark of RANS-Informed Analytical Methods for Fan Broadband Noise Prediction: Part II–Influence of the Acoustic Models
,”
Acoustics
,
2
(
3
), pp.
617
649
.10.3390/acoustics2030033
9.
Lewis
,
D.
,
Moreau
,
S.
,
Jacob
,
M. C.
, and
Sanjosé
,
M.
,
2021
, “
ACAT1 Fan Stage Broadband Noise Prediction Using Large-Eddy Simulation and Analytical Models
,”
AIAA J.
, 60(1), pp.
360–380
.
10.
Drela
,
M.
, and
Youngren
,
H.
,
1998
,
A User's Guide to MISES 2.53
,
MIT Aerospace Computational Design Laboratory
,
Cambridge, MA
.
11.
Schnös
,
M.
,
2020
, “
Eine Auslegungsmethodik für Mehrstufige Axialverdichter auf Basis Einer Profildatenbank
,” Doctoral thesis,
Ruhr-Universität Bochum
, Bochum, Germany.
12.
Grieb
,
H.
,
2009
,
Verdichter für Turbo-Flugtriebwerke
,
Springer
,
Berlin
.
13.
Lieblein
,
S.
,
1957
, “Analysis of Experimental Low-Speed Loss and Stall Characteristics of Two-Dimensional Compressor Blade Cascades,” National Advisory Committee for Aeronautics, Lewis Flight Propulsion Laboratory, Cleveland, OH, Technical Report No.
NACA-RM-E57A28
.https://digital.library.unt.edu/ark:/67531/metadc62962/
14.
König
,
W. M.
,
Hennecke
,
D.
, and
Fottner
,
L.
,
1996
, “
Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part I–A Model for Subsonic Flow
,”
ASME J. Turbomach.
,
118
(
1
), pp.
73
80
.10.1115/1.2836609
15.
Roger
,
M.
,
1994
, “
Sur L'utilisation D'un Modèle de Sillages Pour le Calcul du Bruit D'interaction Rotor-Stator
,”
Acta Acust. Acust.
,
80
(
3
), pp.
238
246
.
16.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
17.
Jurdic
,
V.
,
Joseph
,
P.
, and
Antoni
,
J.
,
2009
, “
Investigation of Rotor Wake Turbulence Through Cyclostationary Spectral Analysis
,”
AIAA J.
,
47
(
9
), pp.
2022
2030
.10.2514/1.36728
18.
Ganz
,
U. W.
,
Joppa
,
P. D.
,
Patten
,
T. J.
, and
Scharpf
,
D. F.
,
1998
, “Boeing 18-Inch Fan Rig Broadband Noise Test,” Boeing Commercial Airplane Group, Hampton, VA, Technical Report No.
NASA/CR-1998-208704
.https://ntrs.nasa.gov/citations/19980236567
19.
Wygnanski
,
I.
,
Champagne
,
F.
, and
Marasli
,
B.
,
1986
, “
On the Large-Scale Structures in Two-Dimensional, Small-Deficit, Turbulent Wakes
,”
J. Fluid Mech.
,
168
, pp.
31
71
.10.1017/S0022112086000289
20.
Behn
,
M.
, and
Tapken
,
U.
,
2019
, “
Investigation of Sound Generation and Transmission Effects Through the ACAT1 Fan Stage Using Compressed Sensing-Based Mode Analysis
,”
AIAA
Paper No. 2019-2502.10.2514/6.2019-2502
21.
Tapken
,
U.
,
Behn
,
M.
,
Spitalny
,
M.
, and
Pardowitz
,
B.
,
2019
, “
Radial Mode Breakdown of the ACAT1 Fan Broadband Noise Generation in the Bypass Duct Using a Sparse Sensor Array
,”
AIAA
Paper No. 2019-2525.10.2514/6.2019-2525
22.
Tapken
,
U.
,
Pardowitz
,
B.
, and
Behn
,
M.
,
2017
, “
Radial Mode Analysis of Fan Broadband Noise
,”
AIAA
Paper No. 2017-3715.10.2514/6.2017-3715
23.
Becker
,
K.
,
Heitkamp
,
K.
, and
Kugeler
,
E.
,
2010
, “
Recent Progress in a Hybrid-Grid CFD Solver for Turbomachinery Flows
,”
Proceedings of the Fifth European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010
, Lisabon, Portugal, June 14–17, pp.
1
13
.https://www.researchgate.net/publication/225006412_Recent_Progress_In_A_Hybrid-Grid_CFD_Solver_For_Turbomachinery_Flows
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
25.
Jaron
,
R.
,
Herthum
,
H.
,
Franke
,
M.
,
Moreau
,
A.
, and
Guérin
,
S.
,
2017
, “
Impact of Turbulence Models on RANS-Informed Prediction of Fan Broadband Interaction Noise
,”
European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Stockholm, Sweden, Apr. 3–7, Paper No. ETC2017-067.10.29008/ETC2017-067
26.
Jaron
,
R.
,
2018
, “
Aeroakustische Auslegung von Triebwerksfans Mittels Multidisziplinärer Optimierungen
,” Doctoral thesis,
Technische Universität Berlin
, Berlin, Germany.
27.
Moreau
,
A.
,
2021
, “
Theoretical Acoustic Benefit of High Bypass Ratio and Variable-Area Nozzle in Turbofan Engines
,”
Proceedings of the 14th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Gdansk, Poland, Apr. 12–16, Paper No. ETC2021-700.10.29008/ETC2021-700
You do not currently have access to this content.