Abstract

The design of efficient, environmentally friendly, and quiet powerplant for rotorcraft architectures constitutes a key enabler for urban air mobility (UAM) application. This work focuses on the development and application of a generic methodology for the design, performance, and environmental impact assessment of a parallel hybrid-electric propulsion system, utilizing simple and advanced recuperated engine cycles. A simulation framework for rotorcraft analysis comprising models for rotor aerodynamics, flight dynamics, and hybrid-electric powerplant performance is deployed for the design exploration and optimization of a hybrid-electric rotorcraft, modeled after the NASA XV-15, adapted for civil applications. Optimally designed powerplants for payload-range capacity, energy efficiency, and environmental impact have been obtained. A comparative evaluation has been performed for the optimum designs. The respective tradeoffs between engine, heat exchanger weight, thermal efficiency, as well as mission fuel burn and environmental impact have been quantified. It has been demonstrated that a recuperated gas turbine-based hybrid-electric architecture may provide improvements of up to 6% in mission range capability without sacrificing useful load. At the same time, analyses performed for a representative 100 km mission suggest reductions in fuel burn and NOX emissions of up to 12.9% and 5.2%, respectively. Analyses are carried at aircraft and mission level using realistic UAM mission scenarios.

References

1.
International Air Transport Association (IATA)
,
2019
, “
Aircraft Technology Roadmap to 2050
,” Geneva, Switzerland, pp.
1
51
.
2.
Bradley
,
M. K.
, and
Droney
,
C. K.
,
2015
, “
Subsonic Ultra Green Aircraft Research Phase II—Volume II—Hybrid Electric Design Exploration
,” NASA, Huntington Beach, CA, Report No.
NASA/CR–2015-218704
.https://ntrs.nasa.gov/api/citations/20150017039/downloads/20150017039.pdf
3.
Edwards
,
T.
, and
Price
,
G.
,
2020
, “
eVTOL Passenger Acceptance
,” NASA, Arlington, VA, Report No.
NASA/CR—2020–220460
.https://ntrs.nasa.gov/api/citations/20200000532/downloads/20200000532.pdf
4.
Holden
,
J.
, and
Goel
,
N.
,
2016
, “
Fast-Forwarding to a Future of On-Demand Urban Air Transportation
,” White Paper, Uber, San Francisco, CA.https://evtol.news/__media/PDFs/UberElevateWhitePaperOct2016.pdf
5.
Roumeliotis
,
I.
,
Mourouzidis
,
C.
,
Zafferetti
,
M.
,
Unlu
,
D.
,
Broca
,
O.
, and
Pachidis
,
V.
,
2020
, “
Assessment of Thermo-Electric Power Plants for Rotorcraft Application
,”
ASME J. Eng. Gas Turbines Power
,
142
(
5
), p.
051003
.10.1115/1.4045103
6.
Kailos
,
N. C.
,
1967
, “
Increased Helicopter Capability Through Advanced Power Plant Technology
,”
J. Am. Helicopter Soc.
,
12
(
3
), pp.
1
15
.10.4050/JAHS.12.3.1
7.
Danis
,
R. A.
,
Green
,
M. W.
,
Freeman
,
J. L.
, and
Hall
,
D. W.
,
2018
, “
Examining the Conceptual Design Process for Future Hybrid-Electric Rotorcraft
,” NASA, Moffet Field, CA, Report No.
NASA/CR-2018-219897
.https://ntrs.nasa.gov/citations/20180003214
8.
Saias
,
C. A.
,
Goulos
,
I.
,
Roumeliotis
,
I.
,
Pachidis
,
V.
, and
M
,
B.
,
2021
, “
Preliminary Design of Hybrid-Electric Propulsion Systems for Emerging Urban Air Mobility Rotorcraft Architectures
,”
ASME J. Eng. Gas Turbines Power
, 143(11), p. 111015.10.1115/1.4052057
9.
Privoznik
,
E. J.
,
1968
, “
Allison T63 Regenerative Engine Program
,”
J. Am. Helicopter Soc.
,
13
(
4
), pp.
56
63
.10.4050/JAHS.13.4.56
10.
Rosen
,
K. M.
,
2008
, “
A Prospective: The Importance of Propulsion Technology to the Development of Helicopter Systems With a Vision for the Future the 27th Alexander A. Nikolsky Lecture
,”
J. Am. Helicopter Soc.
,
53
(
4
), pp.
307
337
.10.4050/JAHS.53.307
11.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part II: Engine Design Studies Following Early Development Testing
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
3
), pp.
280
294
.10.1108/00022660810873719
12.
McDonald
,
C. F.
, and
Wilson
,
D. G.
,
1996
, “
The Utilization of Recuperated and Regenerated Engine Cycles for High-Efficiency Gas Turbines in the 21st Century
,”
Appl. Therm. Eng.
,
16
(
8–9
), pp.
635
653
.10.1016/1359-4311(95)00078-X
13.
Fakhre
,
A.
,
Goulos
,
I.
, and
Pachidis
,
V.
,
2015
, “
An Integrated Methodology to Assess the Operational and Environmental Performance of a Conceptual Regenerative Helicopter
,”
Aeronaut. J.
,
119
, pp.
67
90
.10.1017/s0001924000010253
14.
Zhang
,
C.
, and
Gümmer
,
V.
,
2020
, “
Performance Assessment of Recuperated Rotorcraft Powerplants: Trade-Off Between Fuel Economy and Weight Penalty for Both Tubular and Primary Surface Recuperators
,”
Appl. Therm. Eng.
,
164
, p. 114443.10.1016/j.applthermaleng.2019.114443
15.
Ferrari
,
M. L.
,
Sorce
,
A.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2011
, “
Recuperator Dynamic Performance: Experimental Investigation With a Microgas Turbine Test Rig
,”
Appl. Energy
,
88
(
12
), pp.
5090
5096
.10.1016/j.apenergy.2011.07.016
16.
MacMillan
,
W. L.
,
1974
, “
Development of a Modular Type Computer Program for the Calculation of Gas Turbine
,”
Ph.D. thesis
,
Cranfield University
, UK.http://dspace.lib.cranfield.ac.uk/handle/1826/7401
17.
Goulos
,
I.
,
Ali
,
F.
,
Tzanidakis
,
K.
,
Pachidis
,
V.
, and
d'Ippolito
,
R.
,
2015
, “
A Multidisciplinary Approach for the Comprehensive Assessment of Integrated Rotorcraft–Powerplant Systems at Mission Level
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012603
.10.1115/1.4028181
18.
Vratny
,
P.
,
Gologan
,
C.
,
Pornet
,
C.
,
Isikveren
,
A.
, and
Hornung
,
M.
,
2013
, “
Battery Pack Modeling Methods for Universally-Electric Aircraft
,”
Fourth CEAS Air & Space Conference
, Linköping, Sweden, Dec.https://www.researchgate.net/publication/275019738_Battery_Pack_Modeling_Methods_for_Universally-Electric_Aircraft
19.
Padfield
,
G. D.
,
2007
,
Helicopter Flight Dynamics—The Theory and Application of Flying Qualities and Simulation Modelling
,
Wiley
,
Chichester, UK
.
20.
Leishman
,
J. G.
,
2006
,
Principles of Helicopter Aerodynamic
, 2nd ed.,
Cambridge Aerospace Series
,
New York
.
21.
Bhagwat
,
M. J.
,
2015
, “
Optimum Loading and Induced Swirl Effects in Hover
,”
J. Am. Helicopter Soc.
,
60
(
1
), pp.
1
14
.10.4050/JAHS.60.012004
22.
Glauert
,
H.
,
1935
,
Airplane Propellers
,
Springer
,
Berlin Heidelberg, Berlin, Heidelberg
, pp.
169
360
.
23.
Mangler
,
K. W.
,
1948
, “
Calculation of the Induced Velocity Field of a Rotor
,” Royal Aircraft Establishment, Farnborough, UK, Report Aero 2247.
24.
Bramwell
,
A.
,
Done
,
G.
, and
Balmford
,
D.
,
2000
,
Bramwell's Helicopter Dynamics
,
Butterworth-Heinemann
,
Oxford, UK
.
25.
Dreier
,
M. E.
,
2007
, “
Introduction to Helicopter and Tiltrotor Flight Simulation
,”
AIAA
, Reston, VA.https://arc.aiaa.org/doi/book/10.2514/4.862083
26.
Carlson
,
E. B.
, and
Zhao
,
Y. J.
,
2003
, “
Prediction of Tiltrotor Height-Velocity Diagrams Using Optimal Control Theory
,”
J. Aircr.
,
40
(
5
), pp.
896
905
.10.2514/2.6865
27.
Harendra
,
P. B.
,
Joglekar
,
M. J.
,
Gaffey
,
T. M.
, and
Marr
,
R. L.
,
1973
, “
V/STOL Tilt Rotor Study – Volume V: A Mathematical Model for Real Time Flight Simulation of the Bell Model 301 Tilt Rotor Research Aircraft
,” Bell Helicopter Company, Fort Worth, TX, Report No.
301-099-001
.https://ntrs.nasa.gov/citations/19730022217
28.
Ferguson
,
S. W.
,
1988
, “
A Mathematical Model for Real Time Flight Simulation of a Generic Tilt-Rotor Aircraft
,” NASA, Washington, DC, Contractor Report No.
CR-166536
.https://rotorcraft.arc.nasa.gov/Publications/files/CR-166536_882.pdf
29.
Goulos
,
I.
,
Hempert
,
F.
,
Sethi
,
V.
,
Pachidis
,
V.
,
d'Ippolito
,
R.
, and
d'Auria
,
M.
,
2013
, “
Rotorcraft Engine Cycle Optimization at Mission Level
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091202
.10.1115/1.4024870
30.
Ortiz-Carretero
,
J.
,
Castillo Pardo
,
A.
,
Goulos
,
I.
, and
Pachidis
,
V.
,
2018
, “
Impact of Adverse Environmental Conditions on Rotorcraft Operational Performance and Pollutant Emissions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021201
.10.1115/1.4037751
31.
Vratny
,
P.
,
Forsbach
,
P.
,
Seitz
,
A.
, and
Hornung
,
M.
,
2014
, “
Investigation of Universally Electric Propulsion Systems for Transport Aircraft
,”
29th Congress of the International Council of the Aeronautical Sciences
, Petersburg, Russia, Sept. 7–12.https://www.researchgate.net/publication/275019539_Investigation_of_Universally_Electric_Propulsion_Systems_for_Transport_Aircraft
32.
Goulos
,
I.
,
Giannakakis
,
P.
,
Pachidis
,
V.
, and
Pilidis
,
P.
,
2013
, “
Mission Performance Simulation of Integrated Helicopter–Engine Systems Using an Aeroelastic Rotor Model
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091201
.10.1115/1.4024869
33.
Maisel
,
M. D.
,
Giulianetti
,
D. J.
, and
Dugan
,
D. C.
,
1980
, “
The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight
,” NASA Ames Research Center, Mountain View, CA, Report No.
NASA/SP-2000-4517
.https://history.nasa.gov/monograph17.pdf
34.
Ames Research Center, NASA Technical Memorandum.
,
1975
, “
NASA/Army XV-15 Tilt Rotor Research Aircraft Familiarization Document
,” NASA, Moffett Field, CA, Report No.
NASA TM X-62, 407
.https://ntrs.nasa.gov/api/citations/19750016648/downloads/19750016648.pdf
35.
Churchill
,
G. B.
, and
Dugan
,
D. C.
,
1982
, “
Simulation of the XV-15 Tilt Rotor Research Aircraft
,” NASA, Washington, DC, Report No.
TM 84222
.https://ntrs.nasa.gov/api/citations/19820012300/downloads/19820012300.pdf
36.
Dugan
,
D. C.
,
Enhart
,
R. C.
, and
Schroers
,
L. G.
,
1980
, “
The XV-15 Tilt Rotor Research Aircraft
,” NASA, Washington, DC, Report No.
TM 81244
.https://rotorcraft.arc.nasa.gov/Research/Programs/History%20of%20XV15.pdf
37.
Koning
,
W. J. F.
,
Acree
,
C. W.
, and
Rajagopalan
,
G.
,
2016
, “
Using RotCFD to Predict Isolated XV-15 Rotor Performance
,”
AHS Technical Meeting on Aeromechanics Design for Vertical Lift
, San Francisco, CA, Jan. 20–22.https://rotorcraft.arc.nasa.gov/Publications/files/CFD_Design_Framework_Koning_Acree.pdf
38.
Johnson
,
W.
, and
Branch
,
A.
,
2010
, “
NDARC — NASA Design and Analysis of Rotorcraft. Validation and Demonstration
,”
American Helicopter Society Aeromechanics Specialists' Conference
, San Franscisco, CA, Jan. 20–22.https://rotorcraft.arc.nasa.gov/Publications/files/JohnsonW2_AHS_2010.pdf
39.
Ballin
,
M. G.
,
1988
, “
A High Fidelity Real-Time Simulation of a Small Turboshaft Engine
,”
NASA Ames Research Center
,
Moffett Field, CA
, NASA Technical Memorandum 100991.https://ntrs.nasa.gov/citations/19880016994
40.
Schmitz
,
O.
, and
Hornung
,
M.
,
2013
, “
Unified Applicable Propulsion System Performance Metrics
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111201
.10.1115/1.4025066
41.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
, 2nd ed.,
Black-Well Science
,
Oxford, UK
.
42.
Gunston
,
B.
,
1996
, “
General Electric Aircraft Engine Business Group. Model Specification for T700-GE-700 Turboshaft Engine—Part I
,” Jane's Aero Engines Book, Surrey, UK, Report No. 1983.
You do not currently have access to this content.