Abstract

Underplatform dampers (UPDs) are commonly used in aircraft engines to limit the risk of high-cycle fatigue of turbine blades. The latter is located in a groove between two consecutive blades. The dry friction contact interface between the damper and the blades dissipates energy and so reduces the vibration amplitudes. Two common geometries of dampers are used nowadays, namely wedge and cylindrical dampers, but their efficiency is limited when the blades have an in-phase motion (or a motion close to it), since the damper tends to have a pure rolling motion. The objective of this study is to analyze a new damper geometry, based on a conical shape, which prevents from this pure rolling motion of the damper and ensures a high kinematic slip. The objective of this study is to demonstrate the damping efficiency of this geometry. Hence, in a first part, the kinematic slip is approximated with analytical considerations. Then, a nonlinear dynamic analysis is performed, and the damping efficiency of this new geometry is compared to the wedge and the cylindrical geometries. The results demonstrate that the conical damper has a high damping capacity and is more efficient and more robust than the two others.

References

1.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
2.
Petrov
,
E.
, and
Ewins
,
D.
,
2004
, “
State-of-the-Art Dynamic Analysis for Non-Linear Gas Turbine Structures
,”
Proc. Inst. Mech. Eng., Part G
,
218
(
3
), pp.
199
211
.10.1243/0954410041872906
3.
Cowles
,
B.
,
1996
, “
High Cycle Fatigue in Aircraft Gas Turbines—An Industry Perspective
,”
Int. J. Fract.
,
80
(
2–3
), pp.
147
163
.10.1007/BF00012667
4.
Gaul
,
L.
, and
Nitsche
,
R.
,
2001
, “
The Role of Friction in Mechanical Joints
,”
Appl. Mech. Rev.
,
54
(
2
), pp.
93
106
.10.1115/1.3097294
5.
Feeny
,
B.
,
Guran
,
A.
,
Hinrichs
,
N.
, and
Popp
,
K.
,
1998
, “
A Historical Review on Dry Friction and Stick-Slip Phenomena
,”
Appl. Mech. Rev.
,
51
(
5
), pp.
321
341
.10.1115/1.3099008
6.
Griffin
,
J.
,
1990
, “
A Review of Friction Damping of Turbine Blade Vibration
,”
Int. J. Turbo Jet Engines
,
7
(
3–4
), pp.
297
308
.10.1515/TJJ.1990.7.3-4.297
7.
Szwedowicz
,
J.
,
Gibert
,
C.
,
Sommer
,
T.
, and
Kellerer
,
R.
,
2008
, “
Numerical and Experimental Damping Assessment of a Thin-Walled Friction Damper in the Rotating Setup With High Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012502
.10.1115/1.2771240
8.
Sanliturk
,
K.
,
Ewins
,
D.
, and
Stanbridge
,
A.
,
2001
, “
Underplatform Dampers for Turbine Blades: Theoretical Modeling, Analysis, and Comparison With Experimental Data
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
919
929
.10.1115/1.1385830
9.
Sanliturk
,
K.
,
Ewins
,
D.
,
Elliott
,
R.
, and
Green
,
J.
,
2001
, “
Friction Damper Optimization: Simulation of Rainbow Tests
,”
ASME J. Eng. Gas Turbines Power
,
123
(
4
), pp.
930
939
.10.1115/1.1391278
10.
Panning
,
L.
,
Popp
,
K.
,
Sextro
,
W.
,
Kayser
,
A.
, and
Wolter
,
I.
,
2004
, “
Asymmetrical Underplatform Dampers in Gas Turbine Bladings: Theory and Application
,”
ASME
Paper No. GT2004-53316.10.1115/GT2004-53316
11.
Petrov
,
E.
, and
Ewins
,
D.
,
2007
, “
Advanced Modeling of Underplatform Friction Dampers for Analysis of Bladed Disk Vibration
,”
ASME J. Turbomach.
,
129
(
1
), pp.
143
150
.10.1115/1.2372775
12.
Panning
,
L.
,
Sextro
,
W.
, and
Popp
,
K.
,
2000
, “
Optimization of Interblade Friction Damper Design
,”
ASME
Paper No. 2000-GT-0541.10.1115/2000-GT-0541
13.
Jareland
,
M.
,
2001
, “
A Parametric Study of a Cottage-Roof Damper and Comparison With Experimental Results
,”
ASME
Paper No. 2001-GT-0275.10.1115/2001-GT-0275
14.
Firrone
,
C.
,
Zucca
,
S.
, and
Gola
,
M.
,
2009
, “
Effect of Static/Dynamic Coupling on the Forced Response of Turbine Bladed Disks With Underplatform Dampers
,”
ASME
Paper No. GT2009-59905.10.1115/GT2009-59905
15.
Pesaresi
,
L.
,
Salles
,
L.
,
Jones
,
A.
,
Green
,
J.
, and
Schwingshackl
,
C.
,
2017
, “
Modelling the Nonlinear Behaviour of an Underplatform Damper Test Rig for Turbine Applications
,”
Mech. Syst. Signal Process.
,
85
, pp.
662
679
.10.1016/j.ymssp.2016.09.007
16.
Jareland
,
M.
,
2001
, “
Experimental Investigation of a Platform Damper With Curved Contact Areas
,”
ASME
Paper No. DETC2001/VIB-21391.10.1115/DETC2001/VIB-21391
17.
Csaba
,
G.
,
1999
, “
Modelling of a Microslip Friction Damper Subjected to Translation and Rotation
,”
ASME
Paper No. 99-GT-149.10.1115/1999-GT-149
18.
Bessone
,
A.
,
Toso
,
F.
, and
Berruti
,
T.
,
2015
, “
Investigation on the Dynamic Response of Blades With Asymmetric Under Platform Dampers
,”
ASME
Paper No. GT2015-42597.10.1115/GT2015-42597
19.
Gola
,
M.
, and
Gastaldi
,
C.
,
2014
, “
Understanding Complexities in Underplatform Damper Mechanics
,”
ASME
Paper No. GT2014-25240.10.1115/GT2014-25240
20.
Zucca
,
S.
,
Botto
,
D.
, and
Gola
,
M.
,
2008
, “
Range of Variability in the Dynamics of Semi-Cylindrical Friction Dampers for Turbine Blades
,”
ASME
Paper No. GT2008-51058.10.1115/GT2008-51058
21.
Gastaldi
,
C.
, and
Gola
,
M.
,
2017
, “
Pre-Optimization of Asymmetrical Underplatform Dampers
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012504
.10.1115/1.4034191
22.
Pesaresi
,
L.
,
Armand
,
J.
,
Schwingshackl
,
C.
,
Salles
,
L.
, and
Wong
,
C.
,
2018
, “
An Advanced Underplatform Damper Modelling Approach Based on a Microslip Contact Model
,”
J. Sound Vib.
,
436
, pp.
327
340
.10.1016/j.jsv.2018.08.014
23.
Petrov
,
E.
, and
Ewins
,
D.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
ASME J. Turbomach.
,
125
(
2
), pp.
364
371
.10.1115/1.1539868
24.
Petrov
,
E.
,
2008
, “
Explicit Finite Element Models of Friction Dampers in Forced Response Analysis of Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
022502
.10.1115/1.2772633
25.
Petrov
,
E.
,
2011
, “
A High-Accuracy Model Reduction for Analysis of Nonlinear Vibrations in Structures With Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
133
(
10
), p.
102503
.10.1115/1.4002810
26.
Cameron
,
R.
, and
Martin
,
W.
,
1947
, “
The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals
,”
Ann. Math.
,
48
(
2
), pp.
385
392
.10.2307/1969178
27.
Salles
,
L.
,
Blanc
,
L.
,
Thouverez
,
F.
,
Gouskov
,
A.
, and
Jean
,
P.
,
2009
, “
Dynamic Analysis of a Bladed Disk With Friction and Fretting-Wear in Blade Attachments
,”
ASME
Paper No. GT2009-60151.10.1115/GT2009-60151
28.
Ning
,
X.
, and
Lovell
,
M.
,
2002
, “
On the Sliding Friction Characteristics of Unidirectional Continuous FRP Deposits
,”
ASME J. Tribol.
,
124
(
1
), pp.
5
13
.10.1115/1.1398295
You do not currently have access to this content.