Abstract

Current trends in turbomachinery design significantly reduce the mass ratio of structure to air, making them prone to flutter by aerodynamic coupling between mode shapes, also called coupled-mode flutter. The p–k method, which solves an aeroelastic eigenvalue problem for frequency and damping, respectively, excitation of the aerodynamically coupled system, was adapted for turbomachinery application using aerodynamic responses computed in the frequency domain (FD). A two-dimensional (2D) test case is validated against time-marching fluid–structure coupled simulations for subsonic and transonic conditions. A span of mass ratios is investigated showing that the adapted p–k method is able to predict the transition between aeroelastically stable and unstable cascades depending on the mass ratio. Finally, the p–k method is applied to a low mass ratio fan showing that the flutter-free operating range is significantly reduced when aerodynamic coupling effects are taken into account.

References

1.
Carta
,
F.
,
1967
, “
Coupled Blade-Disk-Shroud Flutter Instabilities in Turbojet Engine Rotors
,”
ASME J. Eng. Power
,
89
(
3
), pp.
419
426
.10.1115/1.3616708
2.
Carstens
,
V.
, and
Belz
,
J.
,
2001
, “
Numerical Investigation of Nonlinear Fluid-Structure Interaction in Vibrating Compressor Blades
,”
ASME J. Turbomach.
,
123
(
2
), pp.
402
408
.10.1115/1.1354138
3.
Sadeghi
,
M.
, and
Liu
,
F.
,
2005
, “
Computation of Cascade Flutter by Uncoupled and Coupled Methods
,”
Int. J. Comput. Fluid D
,
19
(
8
), pp.
556
569
.10.1080/10618560500508367
4.
Chahine
,
C.
,
Verstraete
,
T.
, and
He
,
L.
,
2015
, “
On the Validity of Decoupled Flutter Prediction Methods for Composite Fan Blades
,” ISUAAAT14, Stockholm, Sweden,
Paper No. I14-S5-1
.https://www.researchgate.net/publication/312085694_On_the_validity_of_decoupled_flutter_prediction_methods_for_composite_fan_blades
5.
Chahine
,
C.
,
Verstraete
,
T.
, and
He
,
L.
,
2019
, “
A Comparative Study of Coupled and Decoupled Fan Flutter Prediction Methods Under Variation of Mass Ratio and Blade Stiffness
,”
J. Fluids Struct.
,
85
, pp.
110
125
.10.1016/j.jfluidstructs.2018.12.009
6.
Bendiksen
,
O.
, and
Friedmann
,
P.
,
1980
, “
Coupled Bending-Torsion Flutter in Cascades
,”
AIAA J.
,
18
(
2
), pp.
194
201
.10.2514/3.50748
7.
Bendiksen
,
O.
, and
Friedmann
,
P.
,
1982
, “
The Effect of Bending-Torsion Coupling on Fan and Compressor Blade Flutter
,”
ASME J. Eng. Power
,
104
(
3
), pp.
617
623
.10.1115/1.3227324
8.
Clark
,
S. T.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2009
, “
The Effect of Mass Ratio, Frequency Separation and Solidity on Multi-Mode Fan Flutter
,” ISUAAAT12,
London, UK
, Sept. 1-4,
Paper No. I12-S3-2
.https://mems.duke.edu/about/events/stephen-clark-advisor-kielb
9.
Korte
,
D.
, and
Peitsch
,
D.
,
2013
, “
An Adaption of the P-Method to Analyse the Aerodynamic Damping in Turbomachinery Considering Modal Coupling
,” IFASD,
Bristol, UK
, June 24–26,
Paper No. IFASD-2013-05A
.https://www.researchgate.net/publication/289968332_An_Adaption_of_the_P-method_to_analyse_the_aerodynamic_damping_in_turbomachinery_considering_modal_coupling
10.
Corral
,
R.
,
Gallardo
,
J. M.
, and
Martel
,
C.
,
2009
, “
A Conceptual Flutter Analysis of a Packet of Vanes Using a Mass-Spring Model
,”
ASME J. Turbomach.
,
131
(
2
), p.
021016
.10.1115/1.2952364
11.
Hassig
,
H. J.
,
1971
, “
An Approximate True Damping Solution of the Flutter Equation by Determinant Iteration
,”
J. Aircr.
,
8
(
11
), pp.
885
889
.10.2514/3.44311
12.
Schuff
,
M.
, and
Chenaux
,
V.
,
2020
, “
Coupled Mode Flutter of a Linear Compressor Cascade in Subsonic and Transonic Flow Conditions
,”
ISROMAC18, Virtual Conference
, Nov. 23–26, Paper No. 22.
13.
Lane
,
F.
,
1956
, “
System Mode Shapes in the Flutter of Compressor Blade Rows
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
54
66
.10.2514/8.3502
14.
Bisplinghoff
,
R. L.
,
Ashley
,
H.
, and
Halfman
,
R. L.
,
1957
,
Aeroelasticity
,
Addison-Wesley Publishing Company
,
Boston, MA
.
15.
May
,
M.
,
2012
, “
Linearized Flutter Investigations of Mistuned Turbomachinery Blading
,” Ph.D. thesis,
TU
,
Berlin, Germany
.https://www.researchgate.net/publication/259895282_Linearized_flutter_investigations_of_mistuned_turbomachinery_blading
16.
Chen
,
P. C.
,
2000
, “
Damping Perturbation Method for Flutter Solution: The g-Method
,”
AIAA J.
,
38
(
9
), pp.
1519
1524
.10.2514/2.1171
17.
Pastor
,
M.
,
Binda
,
M.
, and
Harčarik
,
T.
,
2012
, “
Modal Assurance Criterion
,”
Procedia Eng.
,
48
, pp.
543
548
.10.1016/j.proeng.2012.09.551
18.
Kersken
,
H.-P.
,
Frey
,
C.
,
Voigt
,
C.
, and
Ashcroft
,
G.
,
2012
, “
Time-Linearized and Time-Accurate 3D RANS Methods for Aeroelastic Analysis in Turbomachinery
,”
ASME J. Turbomach.
,
134
(
5
), p.
051024
.10.1115/1.4004749
19.
Ashcroft
,
G.
,
Frey
,
C.
, and
Kersken
,
H.-P.
,
2014
, “
On the Development of a Harmonic Balance Method for Aeroelastic Analysis
,”
ECFD VI
,
Barcelona, Spain
, July 20–25, pp.
5885
5896
. http://congress.cimne.com/iacm-eccomas2014/admin/files/filePaper/p1590.pdf
20.
Carstens
,
V.
,
Kemme
,
R.
, and
Schmitt
,
S.
,
2003
, “
Coupled Simulation of Flow-Structure Interaction in Turbomachinery
,”
J. Aerosp. Sci. Technol.
,
7
(
4
), pp.
298
306
.10.1016/S1270-9638(03)00016-6
21.
Berthold
,
C.
,
Frey
,
C.
, and
Schönenborn
,
H.
,
2018
, “
Coupled Fluid Structure Simulation Method in the Frequency Domain for Turbomachinery Applications
,”
ASME Paper No. GT2018-76220
.10.1115/GT2018-76220
22.
Chenaux
,
V.
, and
Grüber
,
B.
,
2015
, “
Aeroelastic Investigation of an Annular Transonic Compressor Cascade: Numerical Sensitivity Study for Validation Purposes
,”
ASME Paper No. GT2015-43297
.10.1115/GT2015-43297
23.
Schuff
,
M.
,
Lengyel-Kampmann
,
T.
, and
Forsthofer
,
N.
,
2017
, “
Influence of the Steady Deformation on Numerical Flutter Prediction for Highly Loaded and Flexible Fan Blades
,”
ASME Paper No. GT2017-64027
.10.1115/GT2017-64027
You do not currently have access to this content.