Abstract

The influence of turbulence modeling approach by means of (U)RANS and large eddy simulation (LES) on the overall modeling of turbulent condensing wet steam flows is investigated using the example of a low-pressure steam turbine cascade. For an accurate numerical treatment of turbulence in the presence of shock waves, necessary for predictive scale-resolving computations, a hybrid flux treatment switches between a baseline nondissipative central flux in energy consistent split form and a shock-capturing upwind flux in shocked regions based on a shock sensor. Condensation is realized by a monodispersed Euler–Euler source term model, the equation of state by the highly efficient and accurate spline based table lookup method (SBTL). The numerical treatment is validated with a decay of homogeneous isotropic turbulence test case containing eddy shocklets. The measurement results of the condensing wet steam cascade are overall much better matched by LES compared to RANS and URANS. Analysis shows that the LES is much better able to account for the inherently unsteady nature of the spontaneous condensation process and its interaction with the trailing edge shock wave structure.

References

1.
Hasini
,
H.
,
Yusoff
,
M. Z.
, and
Malek
,
N. A.
,
2012
, “
Numerical Modeling of Wet Steam Flow in Steam Turbine Channel
,”
Mechanical Engineering
,
M.
Gokcek
, ed.,
IntechOpen
,
London, UK
.10.5772/37394
2.
Starzmann
,
J.
,
Hughes
,
F. R.
,
Schuster
,
S.
,
White
,
A. J.
,
Halama
,
J.
,
Hric
,
V.
,
Kolovratník
,
M.
,
Lee
,
H.
,
Sova
,
L.
,
Št'astný
,
M.
,
Grübel
,
M.
,
Schatz
,
M.
,
Vogt
,
D. M.
,
Patel
,
Y.
,
Patel
,
G.
,
Turunen-Saaresti
,
T.
,
Gribin
,
V.
,
Tishchenko
,
V.
,
Gavrilov
,
I.
,
Kim
,
C.
,
Baek
,
J.
,
Wu
,
X.
,
Yang
,
J.
,
Dykas
,
S.
,
Wróblewski
,
W.
,
Yamamoto
,
S.
,
Feng
,
Z.
, and
Li
,
L.
,
2018
, “
Results of the International Wet Steam Modeling Project
,”
Proc. Inst. Mech. Eng., Part A
,
232
(
5
), pp.
550
570
.10.1177/0957650918758779
3.
Bakhtar
,
F.
,
Young
,
J. B.
,
White
,
A. J.
, and
Simpson
,
D. A.
,
2005
, “
Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
12
), pp.
1315
1333
.10.1243/095440605X8379
4.
Senoo
,
S.
, and
White
,
A. J.
,
2017
, “
Analysis and Design of Wet-Steam Stages
,”
Advances in Steam Turbines for Modern Power Plants
,
T.
Tanuma
, ed.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
165
218
.10.1016/B978-0-08-100314-5.00009-9
5.
Hughes
,
F. R.
,
Starzmann
,
J.
,
White
,
A. J.
, and
Young
,
J. B.
,
2016
, “
A Comparison of Modeling Techniques for Polydispersed Droplet Spectra in Steam Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042603
.10.1115/1.4031389
6.
Post
,
P.
, and
di Mare
,
F.
,
2018
, “
Highly Efficient Euler-Euler Approach for Condensing Steam Flows in Turbomachines
,”
Proceedings of Montreal Global Power and Propulsion Forum
,
Montreal, PQ, Canada
, May 7–9,
Paper No. GPPS-NA-2018-106
.10.5281/zenodo.1344547
7.
Starzmann
,
J.
,
Hughes
,
F. R.
,
White
,
A. J.
,
Grübel
,
M.
, and
Vogt
,
D. M.
,
2017
, “
Numerical Investigation of Boundary Layers in Wet Steam Nozzles
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
012606
.10.1115/1.4034213
8.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cañada, CA
.
9.
White
,
A. J.
,
Young
,
J. B.
, and
Walters
,
P. T.
,
1996
, “
Experimental Validation of Condensing Flow Theory for a Stationary Cascade of Steam Turbine Blades
,”
Philos. Trans. R. Soc. London A
,
354
(
1704
), pp.
59
88
.10.1098/rsta.1996.0003
10.
Kunick
,
M.
,
Kretzschmar
,
H.-J.
,
di Mare
,
F.
, and
Gampe
,
U.
,
2015
, “
CFD Analysis of Steam Turbines With the IAPWS Standard on the Spline-Based Table Look-Up Method (SBTL) for the Fast Calculation of Real Fluid Properties
,”
ASME Paper No. GT2015-43984
.10.1115/GT2015-43984
11.
Kunick
,
M.
,
2018
,
Fast Calculation of Thermophysical Properties in Extensive Process Simulations With the Spline-Based Table Look-Up Method (SBTL)
,
Fortschritt-Berichte VDI
. Reihe 6, Energietechnik, VDI Verlag GmbH, Düsseldorf, Germany.
12.
Post
,
P.
,
Sembritzky
,
M.
, and
di Mare
,
F.
,
2019
, “
Towards Scale Resolving Computations of Condensing Wet Steam Flows
,”
ASME Paper No. GT2019-91269
.10.1115/GT2019-91269
13.
Post
,
P.
,
Winhart
,
B.
, and
di Mare
,
F.
,
2019
, “
Large Eddy Simulation of a Condensing Flow in a Steam Turbine Cascade
,”
Proceedings of the International Gas Turbine Congress (IGTC)
,
Tokyo, Japan
, Nov. 17–22, Paper No. IGTC-2019-124.
14.
Michelassi
,
V.
,
Wissink
,
J. G.
,
Fröhlich
,
J.
, and
Rodi
,
W.
,
2003
, “
Large-Eddy Simulation of Flow Around Low-Pressure Turbine Blade With Incoming Wakes
,”
AIAA J.
,
41
(
11
), pp.
2143
2156
.10.2514/2.6832
15.
Tucker
,
P. G.
,
2011
, “
Computation of Unsteady Turbomachinery Flows: Part 2—LES and Hybrids
,”
Prog. Aerosp. Sci.
,
47
(
7
), pp.
546
569
.10.1016/j.paerosci.2011.07.002
16.
Sandberg
,
R. D.
,
Michelassi
,
V.
,
Pichler
,
R.
,
Chen
,
L.
, and
Johnstone
,
R.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology
,”
ASME J. Turbomach.
,
137
(
5
), p.
051011
.10.1115/1.4028731
17.
Michelassi
,
V.
,
Chen
,
L.-W.
,
Pichler
,
R.
, and
Sandberg
,
R. D.
,
2015
, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances
,”
ASME J. Turbomach.
,
137
(
7
), p.
071005
.10.1115/1.4029126
18.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.10.1017/cbo9780511840531
19.
Ducros
,
F.
,
Laporte
,
F.
,
Soulères
,
T.
,
Guinot
,
V.
,
Moinat
,
P.
, and
Caruelle
,
B.
,
2000
, “
High-Order Fluxes for Conservative Skew-Symmetric-Like Schemes in Structured Meshes: Application to Compressible Flows
,”
J. Comput. Phys.
,
161
(
1
), pp.
114
139
.10.1006/jcph.2000.6492
20.
Larsson
,
J.
,
Lele
,
S. K.
, and
Moin
,
P.
,
2007
, “
Effect of Numerical Dissipation on the Predicted Spectra for Compressible Turbulence
,”
Annu. Res. Briefs
, pp.
47
57
.https://www.semanticscholar.org/paper/Effect-of-numerical-dissipation-on-the-predicted-Larsson-Lele/e40951aa2ffe0895052030d83427fc5ac9849554
21.
Pirozzoli
,
S.
,
2011
, “
Numerical Methods for High-Speed Flows
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
163
194
.10.1146/annurev-fluid-122109-160718
22.
Garnier
,
E.
,
Mossi
,
M.
,
Sagaut
,
P.
,
Comte
,
P.
, and
Deville
,
M.
,
1999
, “
On the Use of Shock-Capturing Schemes for Large-Eddy Simulation
,”
J. Comput. Phys.
,
153
(
2
), pp.
273
311
.10.1006/jcph.1999.6268
23.
Lee
,
S.
,
Lele
,
S. K.
, and
Moin
,
P.
,
1991
, “
Eddy Shocklets in Decaying Compressible Turbulence
,”
Phys. Fluids A: Fluid Dyn.
,
3
(
4
), pp.
657
664
.10.1063/1.858071
24.
Post
,
P.
,
2020
, “
Development of Efficient Numerical Methods for Non-Ideal Compressible Fluid Flows in Propulsion and Power
,”
Doctoral thesis
,
Ruhr-Universität Bochum
,
Bochum, Germany
.10.13154/294-7592
25.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
26.
Young
,
J. B.
,
1982
, “
Spontaneous Condensation of Steam in Supersonic Nozzles
,”
Physicochem. Hydrodyn. (PCH
),
3
(
1
), pp.
57
82
.
27.
Wagner
,
W.
,
Cooper
,
J. R.
,
Dittmann
,
A.
,
Kijima
,
J.
,
Kretzschmar
,
H.-J.
,
Kruse
,
A.
,
Maresˇ
,
R.
,
Oguchi
,
K.
,
Sato
,
H.
,
StöCker
,
I.
,
Sˇifner
,
O.
,
Takaishi
,
Y.
,
Tanishita
,
I.
,
TrüBenbach
,
J.
, and
Willkommen
,
T.
,
2000
, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
150
184
.10.1115/1.483186
28.
Wagner
,
W.
, and
Pruß
,
A.
,
2002
, “
The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use
,”
J. Phys. Chem. Ref. Data
,
31
(
2
), pp.
387
535
.10.1063/1.1461829
29.
Johnsen
,
E.
,
Larsson
,
J.
,
Bhagatwala
,
A. V.
,
Cabot
,
W. H.
,
Moin
,
P.
,
Olson
,
B. J.
,
Rawat
,
P. S.
,
Shankar
,
S. K.
,
Sjögreen
,
B.
,
Yee
,
H. C.
,
Zhong
,
X.
, and
Lele
,
S. K.
,
2010
, “
Assessment of High-Resolution Methods for Numerical Simulations of Compressible Turbulence With Shock Waves
,”
J. Comput. Phys.
,
229
(
4
), pp.
1213
1237
.10.1016/j.jcp.2009.10.028
30.
Godlewski
,
E.
, and
Raviart
,
P.-A.
,
1996
,
Numerical Approximation of Hyperbolic Systems of Conservation Laws
,
Springer
,
New York
.10.1007/978-1-4612-0713-9
31.
Feiereisen
,
W. J.
,
Reynolds
,
W. C.
, and
Ferziger
,
J. H.
,
1981
, “
Numerical Simulation of a Compressible Homogeneous, Turbulent Shear Flow
,” Ph.D. thesis,
Stanford University
,
Stanford, CA
.https://ui.adsabs.harvard.edu/abs/1981PhDT........31F/abstract
32.
Blaisdell
,
G. A.
,
Spyropoulos
,
E. T.
, and
Qin
,
J. H.
,
1996
, “
The Effect of the Formulation of Nonlinear Terms on Aliasing Errors in Spectral Methods
,”
Appl. Numer. Math.
,
21
(
3
), pp.
207
219
.10.1016/0168-9274(96)00005-0
33.
Kennedy
,
C. A.
, and
Gruber
,
A.
,
2008
, “
Reduced Aliasing Formulations of the Convective Terms Within the Navier-Stokes Equations for a Compressible Fluid
,”
J. Comput. Phys.
,
227
(
3
), pp.
1676
1700
.10.1016/j.jcp.2007.09.020
34.
Pirozzoli
,
S.
,
2010
, “
Generalized Conservative Approximations of Split Convective Derivative Operators
,”
J. Comput. Phys.
,
229
(
19
), pp.
7180
7190
.10.1016/j.jcp.2010.06.006
35.
Ducros
,
F.
,
Ferrand
,
V.
,
Nicoud
,
F.
,
Weber
,
C.
,
Darracq
,
D.
,
Gacherieu
,
C.
, and
Poinsot
,
T.
,
1999
, “
Large-Eddy Simulation of the Shock/Turbulence Interaction
,”
J. Comput. Phys.
,
152
(
2
), pp.
517
549
.10.1006/jcph.1999.6238
36.
Liou
,
M.-S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.10.1006/jcph.1 996.0256
37.
Van Leer
,
B.
,
1979
, “
Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov's Method
,”
J. Comput. Phys.
,
32
(
1
), pp.
101
136
.10.1016/0021-9991(79)90145-1
38.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.10.1115/1.1990201
39.
Liou
,
M.-S.
, and
Steffen
,
C. J.
,
1993
, “
A New Flux Splitting Scheme
,”
J. Comput. Phys.
,
107
(
1
), pp.
23
39
.10.1006/jcph.1993.1122
You do not currently have access to this content.