Abstract

Cyclic structures such as turbomachinery present material and geometrical variations between sectors. These discrepancies are called mistuning and break the cyclic symmetry of the structure. Computing the forced response of mistuned cyclic structures is thus a numerical challenge. The component nonlinear complex mode synthesis (CNCMS) is one of the few nonlinear reduced-order model (ROM) formulations that allow to compute the nonlinear response of tuned and mistuned structures. It has been validated successfully for friction problems. However, in the presence of geometric nonlinearities, internal resonances may arise and they cannot be captured correctly with the CNCMS method. The purpose of this work is therefore to present a new methodology for developing a nonlinear ROM that can successfully capture internal resonances for tuned and mistuned structures. This method, called component mode synthesis with nonlinear reevaluation (CMSNR), is based on a variation of the CNCMS approach. The final modal synthesis uses a multiharmonic procedure and a reevaluation of the nonlinear forces on each sector independently. The performance and limitations of the proposed approach are assessed using a simplified example of a blisk subject to polynomial nonlinearities. Different internal resonances are exhibited and studied depending on the type of excitation force and on the level of mistuning.

References

1.
Martin
,
A.
, and
Thouverez
,
F.
,
2019
, “
Dynamic Analysis and Reduction of a Cyclic Symmetric System Subjected to Geometric Nonlinearities
,”
ASME J. Eng. Gas Turbines Power
,
141
(
4
), p.
041027
.10.1115/1.4041001
2.
Seydel
,
R.
,
2010
,
Practical Bifurcation and Stability Analysis
(Interdisciplinary Applied Mathematics), 3rd ed.,
Springer-Verlag
,
New York
.
3.
Fontanela
,
F.
,
Grolet
,
A.
,
Salles
,
L.
, and
Hoffmann
,
N.
,
2019
, “
Computation of Quasi-Periodic Localised Vibrations in Nonlinear Cyclic and Symmetric Structures Using Harmonic Balance Methods
,”
J. Sound Vib.
,
438
, pp.
54
65
.10.1016/j.jsv.2018.09.002
4.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
,
Noël
,
J. P.
, and
Kerschen
,
G.
,
2016
, “
Bifurcation Analysis of a Spacecraft Structure Using the Harmonic Balance Method
,”
ASME
Paper No. DETC2015-46259.10.1115/DETC2015-46259
5.
Georgiades
,
F.
,
Peeters
,
M.
,
Kerschen
,
G.
,
Golinval
,
J. C.
, and
Ruzzene
,
M.
,
2009
, “
Modal Analysis of a Nonlinear Periodic Structure With Cyclic Symmetry
,”
AIAA J.
,
47
(
4
), pp.
1014
1025
.10.2514/1.40461
6.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
7.
MacNeal
,
R. H.
,
1973
, “
NASTRAN Cyclic Symmetry Capability
[
Application to Solid Rocket Propellant Grains and Space Antennas
],” NASA Technical Reports Server, Washington, DC.https://ntrs.nasa.gov/citations/19740006491
8.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2006
, “
Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging Directions
,”
AIAAJ. Propul. Power
, 22(2), pp.
384
396
.https://pdfs.semanticscholar.org/4bec/05384bffba0f5410aa7570fdf3e8ac61cb00.pdf
9.
Wei
,
S.-T.
, and
Pierre
,
C.
,
1988
, “
Localization Phenomena in Mistuned Assemblies With Cyclic Symmetry Part I: Free Vibrations
,”
ASME J. Vib. Acoust.
,
110
(
4
), pp.
429
438
.10.1115/1.3269547
10.
Castanier
,
M. P.
, and
Pierre
,
C.
,
2002
, “
Using Intentional Mistuning in the Design of Turbomachinery Rotors
,”
AIAA J.
,
40
(
10
), pp.
2077
2086
.10.2514/2.1542
11.
Martel
,
C.
,
Corral
,
R.
, and
Llorens
,
J. M.
,
2008
, “
Stability Increase of Aerodynamically Unstable Rotors Using Intentional Mistuning
,”
ASME J. Turbomach.
,
130
(
1
), p.
011006
.10.1115/1.2720503
12.
Biagiotti
,
S.
,
Pinelli
,
L.
,
Poli
,
F.
,
Vanti
,
F.
, and
Pacciani
,
R.
,
2018
, “
Numerical Study of Flutter Stabilization in Low Pressure Turbine Rotor With Intentional Mistuning
,”
Energy Procedia
,
148
, pp.
98
105
.10.1016/j.egypro.2018.08.035
13.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.10.2514/1.13172
14.
Petrov
,
E. P.
,
2013
, “
Analysis of Nonlinear Vibrations Upon Wear-Induced Loss of Friction Dampers in Tuned and Mistuned Bladed Discs
,”
ASME
Paper No. GT2013-95566.10.1115/GT2013-95566
15.
Mitra
,
M.
,
Zucca
,
S.
, and
Epureanu
,
B. I.
,
2016
, “
Adaptive Microslip Projection for Reduction of Frictional and Contact Nonlinearities in Shrouded Blisks
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041016
.10.1115/1.4033003
16.
Mehrdad Pourkiaee
,
S.
, and
Zucca
,
S.
,
2019
, “
A Reduced Order Model for Nonlinear Dynamics of Mistuned Bladed Disks With Shroud Friction Contacts
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011031
.10.1115/1.4041653
17.
Mitra
,
M.
, and
Epureanu
,
B. I.
,
2019
, “
Dynamic Modeling and Projection-Based Reduction Methods for Bladed Disks With Nonlinear Frictional and Intermittent Contact Interfaces
,”
ASME Appl. Mech. Rev.
,
71
(5), p. 050803.10.1115/1.4043083
18.
Rosenberg
,
R. M.
,
1962
, “
The Normal Modes of Nonlinear n-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
7
14
.10.1115/1.3636501
19.
Szemplińska-Stupnicka
,
W.
,
1979
, “
The Modified Single Mode Method in the Investigations of the Resonant Vibrations of Non-Linear Systems
,”
J. Sound Vib.
,
63
(
4
), pp.
475
489
.10.1016/0022-460X(79)90823-X
20.
Laxalde
,
D.
, and
Thouverez
,
F.
,
2009
, “
Complex Non-Linear Modal Analysis for Mechanical Systems: Application to Turbomachinery Bladings With Friction Interfaces
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1009
1025
.10.1016/j.jsv.2008.11.044
21.
Krack
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2013
, “
A Method for Nonlinear Modal Analysis and Synthesis: Application to Harmonically Forced and Self-Excited Mechanical Systems
,”
J. Sound Vib.
,
332
(
25
), pp.
6798
6814
.10.1016/j.jsv.2013.08.009
22.
Sombroek
,
C. S. M.
,
Tiso
,
P.
,
Renson
,
L.
, and
Kerschen
,
G.
,
2018
, “
Numerical Computation of Nonlinear Normal Modes in a Modal Derivative Subspace
,”
Comput. Struct.
,
195
, pp.
34
46
.10.1016/j.compstruc.2017.08.016
23.
Joannin
,
C.
,
Chouvion
,
B.
,
Thouverez
,
F.
,
Ousty
,
J.-P.
, and
Mbaye
,
M.
,
2017
, “
A Nonlinear Component Mode Synthesis Method for the Computation of Steady-State Vibrations in Non-Conservative Systems
,”
Mech. Syst. Signal Process.
,
83
, pp.
75
92
.10.1016/j.ymssp.2016.05.044
24.
Joannin
,
C.
,
Thouverez
,
F.
, and
Chouvion
,
B.
,
2018
, “
Reduced-Order Modelling Using Nonlinear Modes and Triple Nonlinear Modal Synthesis
,”
Comput. Struct.
,
203
, pp.
18
33
.10.1016/j.compstruc.2018.05.005
25.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jézéquel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency–Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.10.1016/S0022-460X(02)01447-5
26.
Muravyov
,
A. A.
, and
Rizzi
,
S. A.
,
2003
, “
Determination of Nonlinear Stiffness With Application to Random Vibration of Geometrically Nonlinear Structures
,”
Comput. Struct.
,
81
(
15
), pp.
1513
1523
.10.1016/S0045-7949(03)00145-7
27.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
28.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
29.
Tran
,
D.-M.
,
2009
, “
Component Mode Synthesis Methods Using Partial Interface Modes: Application to Tuned and Mistuned Structures With Cyclic Symmetry
,”
Comput. Struct.
,
87
(
17–18
), pp.
1141
1153
.10.1016/j.compstruc.2009.04.009
30.
Peeters
,
M.
,
Viguie
,
R.
,
Serandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes—Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.10.1016/j.ymssp.2008.04.003
31.
Vargiu
,
P.
,
Firrone
,
C. M.
,
Zucca
,
S.
, and
Gola
,
M. M.
,
2011
, “
A Reduced Order Model Based on Sector Mistuning for the Dynamic Analysis of Mistuned Bladed Disks
,”
Int. J. Mech. Sci.
,
53
(
8
), pp.
639
646
.10.1016/j.ijmecsci.2011.05.010
32.
Corral
,
R.
,
Khemiri
,
O.
, and
Martel
,
C.
,
2018
, “
Design of Mistuning Patterns to Control the Vibration Amplitude of Unstable Rotor Blades
,”
Aerosp. Sci. Technol.
,
80
, pp.
20
28
.10.1016/j.ast.2018.06.034
33.
Joannin
,
C.
,
Chouvion
,
B.
,
Thouverez
,
F.
,
Mbaye
,
M.
, and
Ousty
,
J.-P.
,
2016
, “
Nonlinear Modal Analysis of Mistuned Periodic Structures Subjected to Dry Friction
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072504
.10.1115/1.4031886
34.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
,
Hoboken, NJ
.
35.
Quaegebeur
,
S.
,
Chouvion
,
B.
,
Thouverez
,
F.
, and
Berthe
,
L.
,
2020
, “
Energy Transfer Between Nodal Diameters of Cyclic Symmetric Structures Exhibiting Polynomial Nonlinearities: Cyclic Condition and Analysis
,”
Mech. Syst. Signal Process.
,
139
, p.
106604
.10.1016/j.ymssp.2019.106604
36.
Thomas
,
D. L.
,
1979
, “
Dynamics of Rotationally Periodic Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
1
), pp.
81
102
.10.1002/nme.1620140107
37.
Monteil
,
M.
,
Besset
,
S.
, and
Sinou
,
J. J.
,
2016
, “
A Double Modal Synthesis Approach for Brake Squeal Prediction
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
1073
1084
.10.1016/j.ymssp.2015.07.023
38.
Sarrouy
,
E.
,
Grolet
,
A.
, and
Thouverez
,
F.
,
2011
, “
Global and Bifurcation Analysis of a Structure With Cyclic Symmetry
,”
Int. J. Non-Linear Mech.
,
46
(
5
), pp.
727
737
.10.1016/j.ijnonlinmec.2011.02.005
39.
Petrov
,
E. P.
,
2016
, “
Analysis of Bifurcations in Multiharmonic Analysis of Nonlinear Forced Vibrations of Gas Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102502
.10.1115/1.4032906
You do not currently have access to this content.