Abstract

Cavitation dynamics continue to pose a significant risk in the development and operation of launch vehicle (LV) propulsion systems. In addition to generating unsteady loads that can directly damage turbopump hardware, cavitation dynamics often couple with LV fluid feed systems, producing system wide POGO instability that can cause catastrophic failures. Despite its importance, the current understanding of cavitation dynamics, and especially pump transfer matrices, is limited. Given the relatively sparse amount of inducer transfer matrix data available, there is a critical need for more in-depth characterization of the cavitation dynamics in turbopump inducers to avoid POGO instability. This paper defines and validates a new reduced-order approach to infer key parameters such as cavitation compliance, K, and mass flow gain factor, M, from simple, single sensor unsteady pressure measurements during inducer inlet pressure ramps. The utility of this approach is demonstrated for a range of inducer geometries reported in the literature. The results are in agreement with experimental data and the paper provides a new capability supporting the assessment of LV POGO instability.

References

1.
Brennen
,
C.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University Press
,
Cambridge, UK
.
2.
Rubin
,
S.
,
1966
, “
Longitudinal Instability of Liquid Rockets Due to Propulsion Feedback (POGO)
,”
J. Spacecr. Rockets
,
3
(
8
), pp.
1188
1195
.10.2514/3.28626
3.
Brennen
,
C.
, and
Acosta
,
A.
,
1976
, “
The Dynamic Transfer Function for a Cavitating Inducer
,”
ASME J. Fluids Eng.
,
98
(
2
), pp.
182
191
.10.1115/1.3448255
4.
Brennen
,
C.
,
Meissner
,
C.
,
Lo
,
E. Y.
, and
Hoffman
,
G. S.
,
1982
, “
Scale Effects in the Dynamic Transfer Functions for Cavitating Inducers
,”
ASME J. Fluids Eng.
,
104
(
4
), pp.
428
433
.10.1115/1.3241875
5.
Kawata
,
Y.
,
Takata
,
T.
,
Yasuda
,
O.
, and
Takeuchi
,
T.
,
1988
, “
Measurement of the Transfer Matrix of a Prototype Multi-Stage Centrifugal Pump
,” IMechE, Paper No. C346/88, pp.
137
142
.
6.
Ng
,
S. L.
, and
Brennen
,
C.
,
1978
, “
Experiments on the Dynamic Behavior of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
166
176
.10.1115/1.3448625
7.
Pace
,
G.
,
Torre
,
L.
,
Pasini
,
A.
,
Valentini
,
D.
, and
d'Agostino
,
L.
,
2013
, “
Experimental Characterization of the Dynamic Transfer Matrix of Cavitating Inducers
,”
AIAA
Paper No. 2013-3763.10.2514/6.2013-3763
8.
Rubin
,
S.
,
2004
, “
An Interpretation of Transfer Function Data for Cavitating Pump
,”
AIAA
Paper No. 2004-4025.10.2514/6.2004-4025
9.
Hori
,
S.
, and
Brennen
,
C.
,
2011
, “
Dynamic Response to Global Oscillation of Propulsion Systems With Cavitating Pumps
,”
J. Spacecr. Rockets
,
48
(
4
), pp.
599
608
.10.2514/1.51945
10.
Wade
,
R.
,
1967
, “
Linearized Theory of a Partially Cavitating Cascade of Flat Plate Hydrofoils
,”
Appl. Sci. Res.
,
17
(
3
), pp.
169
188
.10.1007/BF00386089
11.
Stripling
,
L.
, and
Acosta
,
A.
,
1962
, “
Cavitation in Turbopumps—Part 1
,”
ASME J. Basic Eng.
,
84
(
3
), pp.
326
338
.10.1115/1.3657314
12.
Brennen
,
C.
, and
Acosta
,
A.
,
1973
, “
Theoretical, Quasi-Static Analysis of Cavitation Compliance in Turbopumps
,”
J. Spacecr.
,
10
(
3
), pp.
173
179
.10.2514/3.27748
13.
Jackson
,
D.
,
Schwille
,
J.
,
Gariffo
,
J.
,
Spakovszky
,
Z.
,
Lettieri
,
C.
, and
Wang
,
V.
,
2017
, “
Estimates for Cryogenic Pump Transfer Functions
,”
AIAA
Paper No. 2017-0905.10.2514/6.2017-0905
14.
Cervone
,
A.
,
Piccoli
,
E.
,
Torre
,
L.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2010
, “
Design of a Test Setup for the Characterization of the Dynamic Transfer Matrix of Cavitating Inducers
,”
AIAA
Paper No. 2010-7050.10.2514/6.2010-7050
15.
Iga
,
Y.
,
Hashizume
,
K.
, and
Yoshida
,
Y.
,
2011
, “
Numerical Analysis of Three Types of Cavitation Surge in Cascade
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071102
.10.1115/1.4003663
16.
Tsujimoto
,
Y.
, and
Murata
,
S.
,
1978
, “
Three Dimensional Unsteady Actuator Disk Theory for Subsonic Viscous Flow
,”
J. Appl. Math. Mech.
,
58
(
12
), pp.
561
569
.10.1002/zamm.19780581206
17.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
Y.
,
1993
, “
A Theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
135
141
.10.1115/1.2910095
18.
Hashimoto
,
T.
,
Yamada
,
H.
,
Funatsu
,
S.
,
Ishimoto
,
J.
,
Kamijo
,
K.
, and
Tsujimoto
,
Y.
,
1997
, “
Rotating Cavitation in Three and Four-Bladed Inducers
,”
AIAA
Paper No. 1997-3026.10.2514/6.1997-3026
19.
Kamijo
,
K.
,
Shimura
,
T.
, and
Watanabe
,
M.
,
1980
, “
A Visual Observation of Cavitating Inducer Instability
,” National Aerospace Laboratory, Tokyo, Japan, Report No. TR-598T, p.
12
.
20.
Lettieri
,
C.
,
Spakovszky
,
Z. S.
,
Jackson
,
D.
, and
Schwille
,
J.
,
2018
, “
Characterization of Cavitation Instabilities in a Four-Bladed Turbopump Inducer
,”
J. Propul. Power
,
34
(
2
), pp.
510
520
.10.2514/1.B36317
21.
Shimagaki
,
M.
,
Hashimoto
,
T.
,
Watanabe
,
M.
,
Hasegawa
,
S.
,
Nakamura
,
N.
, and
Shimura
,
T.
,
2006
, “
Unsteady Pressure Fluctuations in an Inducer
,”
JSME Int. J., Ser. B
,
49
(
3
), pp.
806
811
.10.1299/jsmeb.49.806
22.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
,
Hadavandi
,
R.
, and
d'Agostino
,
L.
,
2019
, “
Analysis of Flow Instabilities on a Three-Bladed Axial Inducer in Fixed and Rotating Frames
,”
ASME J. Fluids Eng.
,
141
(
4
), p.
041104
.10.1115/1.4041731
23.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
775
781
.10.1115/1.2819497
24.
Kamijo
,
K.
,
Yoshida
,
M.
, and
Tsujimoto
,
Y.
,
1993
, “
Hydraulic and Mechanical Performance of LE-7 LOX Pump Inducer
,”
J. Propul. Power
,
9
(
6
), pp.
819
826
.10.2514/3.23695
25.
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Kataoka
,
D.
,
Horiguchi
,
H.
, and
Wahl
,
F.
,
2001
, “
Effects of Alternate Leading Edge Cutback on Unsteady Cavitation in 4-Bladed Inducers
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
762
770
.10.1115/1.1411969
26.
Shimura
,
T.
,
1995
, “
Geometry Effects in the Dynamic Response of Cavitating LE-7 Liquid Oxygen Pump
,”
J. Propul. Power
,
11
(
2
), pp.
330
336
.10.2514/3.51429
27.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Brennen
,
C.
,
2001
, “
Unified Treatment of Flow Instabilities of Turbomachines
,”
J. Propul. Power
,
17
(
3
), pp.
636
643
.10.2514/2.5790
28.
Spakovszky
,
Z.
,
2000
, “
Applications of Axial and Radial Compressor Dynamic System Modeling
,”
Ph.D. thesis
,
MIT
,
Cambridge, MA
.http://hdl.handle.net/1721.1/8888
29.
Brennen
,
C.
,
2013
, “
A Review of the Dynamics of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061301
.10.1115/1.4023663
30.
Tani
,
N.
,
Yamanishi
,
N.
, and
Tsujimoto
,
Y.
,
2012
, “
Influence of Flow Coefficient and Flow Structure on Rotational Cavitation in Inducer
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021302
.10.1115/1.4005903
You do not currently have access to this content.