Abstract

New ignition delay time (IDT) data for stoichiometric natural gas (NG) blends composed of C1–C5 n-alkanes with methane as the major component were recorded using a high pressure shock tube (HPST) at reflected shock pressures (p5) and temperatures (T5) in the range 20–30 bar and 1000–1500 K, respectively. The good agreement of the new IDT experimental data with literature data shows the reliability of the new data at the conditions investigated. Comparisons of simulations using the NUI Galway mechanism (nuigmech1.0) show very good agreement with the new experimental results and with the existing data available in the literature. Empirical IDT correlation equations have been developed through multiple linear regression analyses for these C1–C5 n-alkane/air mixtures using constant volume IDT simulations in the pressure range pC = 10–50 bar, at temperatures TC = 950–2000 K, and in the equivalence ratio (φ) range 0.3–3.0. Moreover, a global correlation equation is developed using nuigmech1.0 to predict the IDTs for these NG mixtures and other relevant data available in the literature. The correlation expression utilized in this study employs a traditional Arrhenius rate form including dependencies on the individual fuel fraction, TC, φ, and pC.

References

1.
Cho
,
H. M.
, and
He
,
B.-Q.
,
2007
, “
Spark Ignition Natural Gas Engines—A Review
,”
Energy Convers. Manag.
,
48
(
2
), pp.
608
618
.10.1016/j.enconman.2006.05.023
2.
Korakianitis
,
T.
,
Namasivayam
,
A. M.
, and
Crookes
,
R. J.
,
2011
, “
Natural-Gas Fueled Spark-Ignition (SI) and Compression-Ignition (CI) Engine Performance and Emissions
,”
Prog. Energy Combust. Sci.
,
37
(
1
), pp.
89
112
.10.1016/j.pecs.2010.04.002
3.
Wei
,
L.
, and
Geng
,
P.
,
2016
, “
A Review on Natural Gas/Diesel Dual Fuel Combustion, Emissions and Performance
,”
Fuel Process. Technol.
,
142
, pp.
264
278
.10.1016/j.fuproc.2015.09.018
4.
Koç
,
Y.
,
Yağlı
,
H.
,
Görgülü
,
A.
, and
Koç
,
A.
,
2020
, “
Analysing the Performance, Fuel Cost and Emission Parameters of the 50 MW Simple and Recuperative Gas Turbine Cycles Using Natural Gas and Hydrogen as Fuel
,”
Int. J. Hydrogen Energy
,
45
(
41
), pp.
22138
22147
.10.1016/j.ijhydene.2020.05.267
5.
Zeng
,
W.
,
Pang
,
L.
,
Zheng
,
W.
, and
Hu
,
E.
,
2020
, “
Study on Combustion and Emission Characteristics of a Heavy-Duty Gas Turbine Combustor Fueled With Natural Gas
,”
Fuel
,
275
, p.
117988
.10.1016/j.fuel.2020.117988
6.
Cho
,
H. M.
, and
He
,
B.-Q.
,
2009
, “
Combustion and Emission Characteristics of a Natural Gas Engine Under Different Operating Conditions
,”
Environ. Eng. Res
,
14
(
2
), pp.
95
101
..10.4491/eer.2009.14.2.095
7.
Kobayashi
,
K.
, Sako, T., Yoshimi, S., Morimoto, S., Kanematsu, S., Suzuki, K., Nakazono, T., and Ohtsubo, H.,
2011
, “
Development of HCCI Natural Gas Engines
,”
J. Nat. Gas Sci. Eng.
,
3
(
5
), pp.
651
656
.10.1016/j.jngse.2011.07.002
8.
Djermouni
,
M.
, and
Ouadha
,
A.
,
2014
, “
Thermodynamic Analysis of an HCCI Engine Based System Running on Natural Gas
,”
Energy Convers. Manag.
,
88
, pp.
723
731
.10.1016/j.enconman.2014.09.033
9.
Du
,
G.
,
Wang
,
Z.
,
Wang
,
D.
,
Wang
,
X.
, and
Fu
,
X.
,
2020
, “
Study on the Effect of Water Addition on Combustion Characteristics of a HCCI Engine Fueled With Natural Gas
,”
Fuel
,
270
, p.
117547
.10.1016/j.fuel.2020.117547
10.
Djermouni
,
M.
, and
Ouadha
,
A.
,
2017
, “
Comparative Assessment of LNG and LPG in HCCI Engines
,”
Energy Procedia
,
139
, pp.
254
259
.10.1016/j.egypro.2017.11.205
11.
Zhu
,
P.
,
Yao
,
J.
,
Qian
,
C.
,
Yang
,
F.
,
Porpatham
,
E.
,
Zhang
,
Z.
, and
Wu
,
Z.
,
2020
, “
High-Efficiency Conversion of Natural Gas Fuel to Power by an Integrated System of SOFC, HCCI Engine, and Waste Heat Recovery: Thermodynamic and Thermo-Economic Analyses
,”
Fuel
,
275
, p.
117883
.10.1016/j.fuel.2020.117883
12.
Jin
,
C.
, and
Zheng
,
Z.
,
2015
, “
A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics
,”
J. Chem.
,
2015
, pp.
1
23
.10.1155/2015/910348
13.
Li
,
M.
,
Wu
,
H.
,
Zhang
,
T.
,
Shen
,
B.
,
Zhang
,
Q.
, and
Li
,
Z.
,
2020
, “
A Comprehensive Review of Pilot Ignited High Pressure Direct Injection Natural Gas Engines: Factors Affecting Combustion, Emissions and Performance
,”
Renew. Sustain. Energy Rev
,
119
, p.
109653
.10.1016/j.rser.2019.109653
14.
You
,
J.
,
Liu
,
Z.
,
Wang
,
Z.
,
Wang
,
D.
, and
Xu
,
Y.
,
2020
, “
Impact of Natural Gas Injection Strategies on Combustion and Emissions of a Dual Fuel Natural Gas Engine Ignited With Diesel at Low Loads
,”
Fuel
,
260
, p.
116414
.10.1016/j.fuel.2019.116414
15.
Chen
,
Z.
,
He
,
J.
,
Chen
,
H.
,
Wang
,
L.
, and
Geng
,
L.
,
2020
, “
Experimental Study of the Effects of Spark Timing and Water Injection on Combustion and Emissions of a Heavy-Duty Natural Gas Engine
,”
Fuel
,
276
, p.
118025
.10.1016/j.fuel.2020.118025
16.
Faramawy
,
S.
,
Zaki
,
T.
, and
Sakr
,
A. A. E.
,
2016
, “
Natural Gas Origin, Composition, and Processing: A Review
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
34
54
.10.1016/j.jngse.2016.06.030
17.
Baigmohammadi
,
M.
,
Patel
,
V.
,
Martinez
,
S.
,
Panigrahy
,
S.
,
Ramalingam
,
A.
,
Burke
,
U.
,
Somers
,
K. P.
,
Heufer
,
K. A.
,
Pekalski
,
A.
, and
Curran
,
H. J.
,
2020
, “
A Comprehensive Experimental and Simulation Study of Ignition Delay Time Characteristics of Single Fuel C1–C2 Hydrocarbons Over a Wide Range of Temperatures, Pressures, Equivalence Ratios, and Dilutions
,”
Energy Fuels
,
34
(
3
), pp.
3755
3771
.10.1021/acs.energyfuels.9b04139
18.
Mohamed
,
A. A. E.-S.
,
Panigrahy
,
S.
,
Sahu
,
A. B.
,
Bourque
,
G.
, and
Curran
,
H.
,
2021
, “
An Experimental and Kinetic Modeling Study of the Auto-Ignition of Natural Gas Blends Containing C1–C7 Alkanes
,”
Proc. Combust. Inst.
, 38(1), pp.
365
373
.10.1016/j.proci.2020.06.015
19.
Dong
,
S.
, Zhang, K., Senecal, P. K., Kukkadapu, G., Wagnon, S. W., Barrett, S., Lokachari, N., Panigaphy, S., Pitz, W. J., and Curran, H.,
2021
, “
A Comparative Reactivity Study of 1-Alkene Fuels From Ethylene to 1-Heptene
,”
Proc. Combust. Inst
., 38(1), pp.
611
619
.10.1016/j.proci.2020.07.053
20.
Baigmohammadi
,
M.
,
Patel
,
V.
,
Nagaraja
,
S.
,
Ramalingam
,
A.
,
Martinez
,
S.
,
Panigrahy
,
S.
,
Mohamed
,
A. A. E.-S.
,
Somers
,
K. P.
,
Burke
,
U.
,
Heufer
,
K. A.
,
Pekalski
,
A.
, and
Curran
,
H. J.
,
2020
, “
Comprehensive Experimental and Simulation Study of the Ignition Delay Time Characteristics of Binary Blended Methane, Ethane, and Ethylene Over a Wide Range of Temperature, Pressure, Equivalence Ratio, and Dilution
,”
Energy Fuels
,
34
(
7
), pp.
8808
8823
.10.1021/acs.energyfuels.0c00960
21.
Nagaraja
,
S. S.
, Jennifer, P., Kukkadapu, G., Dong, S., Wagnon, S. W., Pitzb, W. J., and Curran, H.,
2021
, “
A Single Pulse Shock Tube Study of Pentene Isomer Pyrolysis
,”
Proc. Combust. Inst
., 38(1), pp.
881
889
.10.1016/j.proci.2020.06.069
22.
Panigrahy
,
S.
, Liang, J., Nagaraja, S. S., Zuo, Z., Kim, G., Kukkadapu, G., Dong, S., Pitzb, W. J., Vasu, S. S., and Curran, H.,
2021
, “
A Comprehensive Experimental and Improved Kinetic Modeling Study on the Pyrolysis and Oxidation of Propyne
,”
Proc. Combust. Inst
., 38(1), pp.
479
488
.10.1016/j.proci.2020.06.320
23.
Lifshitz
,
A.
,
Scheller
,
K.
,
Burcat
,
A.
, and
Skinner
,
G. B.
,
1971
, “
Shock-Tube Investigation of Ignition in Methane-Oxygen-Argon Mixtures
,”
Combust. Flame
,
16
(
3
), pp.
311
321
.10.1016/S0010-2180(71)80102-5
24.
Spadaccini
,
L. J.
,
1977
, “
Autoignition Characteristics of Hydrocarbon Fuels at Elevated Temperatures and Pressures
,”
ASME J. Eng. Power
,
99
(
1
), pp.
83
87
.10.1115/1.3446256
25.
Colket
,
M. B.
, and
Spadaccini
,
L. J.
,
2001
, “
Scramjet Fuels Autoignition Study
,”
J. Propuls. Power
,
17
(
2
), pp.
315
323
.10.2514/2.5744
26.
Horning
,
D. C.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2002
, “
Study of the High-Temperature Autoignition of n-Alkane/O/Ar Mixtures
,”
J. Propuls. Power
,
18
(
2
), pp.
363
371
. Mar.10.2514/2.5942
27.
Assanis
,
D. N.
,
Filipi
,
Z. S.
,
Fiveland
,
S. B.
, and
Syrimis
,
M.
,
2003
, “
A Predictive Ignition Delay Correlation Under Steady-State and Transient Operation of a Direct Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
450
457
.10.1115/1.1563238
28.
Khaled
,
F.
, and
Farooq
,
A.
,
2019
, “
On the Universality of Ignition Delay Times of Distillate Fuels at High Temperatures: A Statistical Approach
,”
Combust. Flame
,
210
, pp.
145
158
.10.1016/j.combustflame.2019.08.026
29.
Bourque
,
G.
, Healy, D., Curran, H., Zinner, C., Kalitan, D., de Vries, J., Aul, C., and Petersen, E., 2009, “
Ignition and Flame Speed Kinetics of Two Natural Gas Blends With High Levels of Heavier Hydrocarbons
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), pp.
21504
21511
.10.1115/1.3124665
30.
Healy
,
D.
,
Kalitan
,
D. M.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Oxidation of C1−C5 Alkane Quinternary Natural Gas Mixtures at High Pressures
,”
Energy Fuels
,
24
(
3
), pp.
1521
1528
.10.1021/ef9011005
31.
Nakamura
,
H.
,
Darcy
,
D.
,
Mehl
,
M.
,
Tobin
,
C. J.
,
Metcalfe
,
W. K.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2014
, “
An Experimental and Modeling Study of Shock Tube and Rapid Compression Machine Ignition of n-Butylbenzene/Air Mixtures
,”
Combust. Flame
,
161
(
1
), pp.
49
64
.10.1016/j.combustflame.2013.08.002
32.
Morley
,
C.
, “
Gaseq Program
,” Gaseq, UK, accessed Sept. 29, 2017, http://www.gaseq.co.uk
33.
Brown
,
C. J.
, and
Thomas
,
G. O.
,
1999
, “
Experimental Studies of Shock-Induced Ignition and Transition to Detonation in Ethylene and Propane Mixtures
,”
Combust. Flame
,
117
(
4
), pp.
861
870
.10.1016/S0010-2180(98)00133-3
34.
Petersen
,
E. L.
,
2009
, “
Interpreting Endwall and Sidewall Measurements in Shock-Tube Ignition Studies
,”
Combust. Sci. Technol.
,
181
(
9
), pp.
1123
1144
. Sep.10.1080/00102200902973323
35.
Wei
,
L.
,
Tang
,
C.
,
Man
,
X.
,
Jiang
,
X.
, and
Huang
,
Z.
,
2012
, “
High-Temperature Ignition Delay Times and Kinetic Study of Furan
,”
Energy Fuels
,
26
(
4
), pp.
2075
2081
.10.1021/ef300336y
36.
Hargis
,
J. W.
, and
Petersen
,
E. L.
,
2015
, “
Methane Ignition in a Shock Tube With High Levels of CO2 Dilution: Consideration of the Reflected-Shock Bifurcation
,”
Energy Fuels
,
29
(
11
), pp.
7712
7726
.10.1021/acs.energyfuels.5b01760
37.
Downes
,
S.
,
Knott
,
A.
, and
Robinson
,
I.
,
2014
, “
Towards a Shock Tube Method for the Dynamic Calibration of Pressure Sensors
,”
Philos. Trans. A. Math. Phys. Eng. Sci.
,
372
(
2023
), p.
20130299
.10.1098/rsta.2013.0299
38.
Klicka
,
R.
, and
Kubácek
,
L.
,
1997
, “
Statistical Properties of Linearization of the Arrhenius Equation Via the Logarithmic Transformation
,”
Chemom. Intell. Lab. Syst.
,
39
(
1
), pp.
69
75
.10.1016/S0169-7439(97)00049-X
39.
Sundberg
,
R.
,
1998
, “
Statistical Aspects on Fitting the Arrhenius Equation
,”
Chemom. Intell. Lab. Syst.
,
41
(
2
), pp.
249
252
.10.1016/S0169-7439(98)00052-5
40.
Vallabhuni
,
S. K.
,
Lele
,
A. D.
,
Patel
,
V.
,
Lucassen
,
A.
,
Moshammer
,
K.
,
AlAbbad
,
M.
,
Farooq
,
A.
, and
Fernandes
,
R. X.
,
2018
, “
Autoignition Studies of Liquefied Natural Gas (LNG) in a Shock Tube and a Rapid Compression Machine
,”
Fuel
,
232
, pp.
423
430
.10.1016/j.fuel.2018.04.168
You do not currently have access to this content.