Abstract

The increasing demands for air-taxi operations together with the ambitious targets for reduced environmental impact have driven significant interest in alternative rotorcraft architectures and propulsion systems. The design of hybrid-electric propulsion systems (HEPSs) for rotorcraft is seen as being able to contribute to those goals. This work aims to conduct a comprehensive design and tradeoff analysis of hybrid powerplants for rotorcraft, targeting enhanced payload-range capability and fuel economy. An integrated methodology for the design, performance assessment, and optimal implementation of HEPSs for conceptual rotorcraft has been developed. A multidisciplinary approach is devised comprising models for rotor aerodynamics, flight dynamics, HEPS performance, and weight estimation. All models are validated using experimental or flight test data. The methodology is deployed for the assessment of a hybrid-electric tilt-rotor, modeled after the NASA XV-15. This work targets to provide new insight into the preliminary design and sizing of optimally designed HEPSs for novel tilt-rotor aircraft. The paper demonstrates that at present, current battery energy densities (250 Wh/kg) severely limit the degree of hybridization if a fixed useful payload and range are to be achieved. However, it is also shown that if advancements in battery energy density to 500 Wh/kg are realized, a significant increase in the level of hybridization and hence reduction of fuel burned and carbon output relative to the conventional configuration can be attained. The methodology presented is flexible enough to be applied to alternative rotorcraft configurations and propulsion systems.

References

1.
Edwards
,
T.
, and
Price
,
G.
, “
eVTOL Passenger Acceptance
,” National Aeronautics and Space Administration, Ames Research Center, Moffett Field, CA, accessed Jan. 24, 2020, https://ntrs.nasa.gov/citations/20200000532
2.
Trevor
,
R.
,
2020
, "Global Traffic Scorecard INRIX Research," ABOUT INRIX RESEARCH Launched in 2016, INRIX Resear
3.
Holden
,
J.
, and
Goel
,
N.
,
2016
, “
Fast-Forwarding to a Future of on-Demand Urban Air Transportation
,” White Paper, Uber Technologies, San Francisco, CA.https://www.semanticscholar.org/paper/Fast-Forwarding-to-a-Future-of-On-Demand-Urban-Air/3e2c3af406cfcf38ed475c843a17645acbe3fe3c
4.
Advisory Council for Aviation Research and Innovation in Europe (ACARE)
,
2012
, “
Realising Europe's Vision for Aviation: Strategic Research & Innovation Agenda
,” Advisory Council for Aviation Research and Innovation in Europe, 01, Blagnac, France.
5.
Bradley
,
M.
,
Droney
,
C.
,
Paisley
,
D.
,
Roth
,
B.
,
Gowda
,
S.
, and
Kirby
,
M.
,
2010
, “
NASA N+3 Subsonic Ultra Green Aircraft Research SUGAR Final Review
,” Boeing Research and Technology, Huntington Beach, CA.
6.
Roumeliotis
,
I.
,
Mourouzidis
,
C.
,
Zafferetti
,
M.
,
Unlu
,
D.
,
Broca
,
O.
, and
Pachidis
,
V.
,
2020
, “
Assessment of Thermo-Electric Power Plants for Rotorcraft Application
,”
ASME J. Eng. Gas Turbines Power
,
142
(
5
), p.
051003
.10.1115/1.4045103
7.
Danis
,
R. A.
,
Green
,
M. W.
,
Freeman
,
J. L.
, and
Hall
,
D. W.
,
2018
, “
Examining the Conceptual Design Process for Future Hybrid-Electric Rotorcraft
,” Ames Research Center, Moffett Field, Mountain View, CA, Report No. NASA/CR-2018-219897.
8.
Johnson
,
W.
,
Silva
,
C.
, and
Solis
,
E.
,
2018
, “
Concept Vehicles for VTOL Air Taxi Operations
,”
AHS Technical Conference on Aeromechanics Design for Transformative Vertical Flight
, San Francisco, CA, Jan.
16
18
.
9.
Hendricks
,
E. S.
,
Aretskin-Hariton
,
E. D.
,
Chapman
,
J. W.
,
Gray
,
J.
, and
Falck
,
R. D.
,
2019
, “
Propulsion System Optimization for a Turboelectric Tiltwing Urban Air Mobility Aircraft
,” Isabe 2019,
Canberra, Australia
, Paper No. ISABE-2019-24365.
10.
Isikveren
,
A.
,
Kaiser
,
S.
,
Pornet
,
C.
, and
Vratny
,
P.
,
2014
, “
Pre-Design Strategies and Sizing Techniques for Dual-Energy Aircraft
,”
Aircr. Eng. Aerospace Technol.
,
86
(
6
), pp.
525
542
.10.1108/AEAT-08-2014-0122
11.
Vratny
,
P.
,
Forsbach
,
P.
,
Seitz
,
A.
, and
Hornung
,
M.
,
2014
, “
Investigation of Universally Electric Propulsion Systems for Transport Aircraft
,”
29th Congress of the International Council of the Aeronautical Sciences, ICAS 2014
, St. Petersburg, Russia, Sept.
7
12
.https://www.researchgate.net/publication/275019539_Investigation_of_Universally_Electric_Propulsion_Systems_for_Transport_Aircraft
12.
Pornet
,
C.
,
Gologan
,
C.
,
Vratny
,
P. C.
,
Seitz
,
A.
,
Schmitz
,
O.
,
Isikveren
,
A. T.
, and
Hornung
,
M.
,
2015
, “
Methodology for Sizing and Performance Assessment of Hybrid Energy Aircraft
,”
J. Aircr.
,
52
(
1
), pp.
341
352
.10.2514/1.C032716
13.
Riboldi
,
C.
, and
Gualdoni
,
F.
,
2016
, “
An Integrated Approach to the Preliminary Weight Sizing of Small Electric Aircraft
,”
Aerosp. Sci. Technol.
,
58
, pp.
134
149
.10.1016/j.ast.2016.07.014
14.
Dean
,
T. S.
,
Wroblewski
,
G. E.
, and
Ansell
,
P. J.
,
2018
, “
Mission Analysis and Component-Level Sensitivity Study of Hybrid-Electric General-Aviation Propulsion Systems
,”
J. Aircr.
,
55
(
6
), pp.
2454
2465
.10.2514/1.C034635
15.
Perullo
,
C. A.
,
Trawick
,
D. R.
, and
Mavris
,
D. N.
,
2016
, “
Assessment of Engine and Vehicle Performance Using Integrated Hybrid-Electric Propulsion Models
,”
J. Propul. Power
,
32
(
6
), pp.
1305
1314
.10.2514/1.B35744
16.
Epstein
,
A. H.
, and
O'Flarity
,
S. M.
,
2019
, “
Considerations for Reducing Aviation's CO2 With Aircraft Electric Propulsion
,”
J. Propul. Power
,
35
(
3
), pp.
572
582
.10.2514/1.B37015
17.
Riboldi
,
C. E.
,
2018
, “
An Optimal Approach to the Preliminary Design of Small Hybrid-Electric Aircraft
,”
Aerosp. Sci. Technol.
,
81
, pp.
14
31
.10.1016/j.ast.2018.07.042
18.
Silva
,
C.
,
Johnson
,
W.
, and
Solis
,
E.
,
2018
, “
Multidisciplinary Conceptual Design for Reduced-Emission Rotorcraft
,”
AHS Specialists Conference on Aeromechanics Design for Transformative Vertical Flight
, San Francisco, CA, Jan.
16
18
.
19.
MacMillan
,
W. L.
,
1974
, “
Development of a Modular Type Computer Program for the Calculation of Gas Turbine
,” Ph.D. thesis,
Cranfield University
, Bedford, UK.
20.
Goulos
,
I.
,
Ali
,
F.
,
Tzanidakis
,
K.
,
Pachidis
,
V.
, and
d'Ippolito
,
R.
,
2015
, “
A Multidisciplinary Approach for the Comprehensive Assessment of Integrated Rotorcraft–Powerplant Systems at Mission Level
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p. 012603. 10.1115/1.4028181
21.
Vratny
,
P.
,
Gologan
,
C.
,
Pornet
,
C.
,
Isikveren
,
A.
, and
Hornung
,
M.
,
2013
, “
Battery Pack Modeling Methods for Universally-Electric Aircraft
,” 4th CEAS Air & Space Conference, Sweden, Sept. 16–19.
22.
European Organization for the Safety of Air Navigation (EUROCONTROL) and Institute of Geodesy and Navigation (IfEN)
,
1998
, WGS 84 Implementation Manual, EUROCONTROL, Brussels, Belgium.
23.
Goulos
,
I.
,
Giannakakis
,
P.
,
Pachidis
,
V.
, and
Pilidis
,
P.
,
2013
, “
Mission Performance Simulation of Integrated Helicopter–Engine Systems Using an Aeroelastic Rotor Model
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091201
.10.1115/1.4024869
24.
Padfield
,
G. D.
,
2007
,
Helicopter Flight Dynamics—The Theory and Application of Flying Qualities and Simulation Modelling
,
Wiley
,
Chichester, UK
.
25.
Leishman
,
J. G.
,
2006
, “
Principles of Helicopter Aerodynamic
,”
Cambridge Aerospace Series
, 2nd ed.,
New York
.
26.
Bramwell
,
A.
,
Done
,
G.
, and
Balmford
,
D.
,
2000
,
Bramwell's Helicopter Dynamics
,
Butterworth-Heinemann
,
Oxford, UK
.
27.
Johnson
,
W.
,
2013
,
Rotorcraft Aeromechanics
,
Cambridge University Press, Cambridge, UK
.
28.
Bhagwat
,
M. J.
,
2015
, “
Optimum Loading and Induced Swirl Effects in Hover
,”
J. Am. Helicopter Soc.
,
60
(
1
), pp.
1
14
.10.4050/JAHS.60.012004
29.
Glauert
,
H.
,
1935
,
Airplane Propellers
,
Springer, Berlin Heidelberg
,
Berlin, Heidelberg, Germany
, pp.
169
360
.
30.
Mangler
,
K. W.
,
1948
, “
Calculation of the Induced Velocity Field of a Rotor
,” Royal Aircraft Establishment, Farnborough, UK, Report No. Aero 2247.
31.
Mangler
,
K. W.
, and
Squire
,
H. B.
,
1950
, “
The Induced Velocity Field of a Rotor
,” London, UK, Report No. ARC R & M 2642.
32.
Stahlhut
,
C.
, and
Leishman
,
J. G.
,
2012
, “
Aerodynamic Design Optimization of Proprotors for Convertible Rotor Concepts
,”
68th Annual Forum of American Helicopter Society
, Fort Worth, TX, May
1
3
.http://hdl.handle.net/1903/13068
33.
Prandtl
,
L.
,
1919
, “
Schraubenpropellermit Geringstem Energieverlust (Appendix to the Article of A. Betz)
,” Gotingen, Germany.
34.
More
,
J. J.
,
Garbow
,
B. S.
, and
Hillstrom
,
K. E.
,
1980
, “
User Guide for MINPACK-1. [in FORTRAN]
,” Technical Report.10.2172/6997568
35.
Dreier
,
M. E.
,
2007
, “
Introduction to Helicopter and Tiltrotor Flight Simulation
,” AIAA, Reston, VA.10.2514/4.862083
36.
Harendra
,
P. B.
,
Joglekar
,
M. J.
,
Gaffey
,
T. M.
, and
Marr
,
R. L.
,
1973
, “
V/STOL Tilt Rotor Study–Volume V: A Mathematical Model for Real Time Flight Simulation of the Bell Model 301 Tilt Rotor Research Aircraft
,” Bell Helicopter Company, Fort Worth, TX, Report No. 301-099-001.
37.
Ferguson
,
S. W.
,
1988
, “
A Mathematical Model for Real Time Flight Simulation of a Generic Tilt-Rotor Aircraft
,” NASA, Washington, DC, Report No. CR-166536.
38.
Maisel
,
M. D.
,
Giulianetti
,
D. J.
, and
Dugan
,
D. C.
,
2000
, “
The History of the XV-15 Tilt Rotor Research Aircraft: From Concept to Flight
,” NASA Ames Research Center, 09, Washington, DC, Report No. NASA/SP-2000-4517.
39.
Carlson
,
E. B.
, and
Zhao
,
Y. J.
,
2002
, “
Optimal Short Takeoff of Tiltrotor Aircraft in One Engine Failure
,”
J. Aircr.
,
39
(
2
), pp.
280
289
.10.2514/2.2925
40.
Carlson
,
E. B.
, and
Zhao
,
Y. J.
,
2003
, “
Prediction of Tiltrotor Height-Velocity Diagrams Using Optimal Control Theory
,”
J. Aircr.
,
40
(
5
), pp.
896
905
.10.2514/2.6865
41.
Pachidis
,
V.
,
Pilidis
,
P.
,
Marinai
,
L.
, and
Templalexis
,
I.
,
2007
, “
Towards a Full Two Dimensional Gas Turbine Performance Simulator
,”
Aeronaut. J.
,
111
(
1121
), pp.
433
442
.10.1017/S0001924000004693
42.
Goulos
,
I.
,
Hempert
,
F.
,
Sethi
,
V.
,
Pachidis
,
V.
,
d'Ippolito
,
R.
, and
d'Auria
,
M.
,
2013
, “
Rotorcraft Engine Cycle Optimization at Mission Level
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091202
.10.1115/1.4024870
43.
Ortiz-Carretero
,
J.
,
Castillo Pardo
,
A.
,
Goulos
,
I.
, and
Pachidis
,
V.
,
2018
, “
Impact of Adverse Environmental Conditions on Rotorcraft Operational Performance and Pollutant Emissions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p. 10.
021201
.10.1115/1.4037751
44.
Lolis
,
P.
,
2014
, “
Development of a Preliminary Weight Estimation Method for Advanced Turbofan Engines
,” Ph.D. thesis,
Cranfield University
, Bedford, UK.
45.
Schmitz
,
O.
, and
Hornung
,
M.
,
2013
, “
Unified Applicable Propulsion System Performance Metrics
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111201
.10.1115/1.4025066
46.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
EEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
47.
Goulos
,
I.
, and
Bonesso
,
M.
,
2019
, “
Variable Rotor Speed and Active Blade Twist for Civil Rotorcraft: Optimum Scheduling, Mission Analysis, and Environmental Impact
,”
Aerosp. Sci. Technol.
,
88
, pp.
444
456
.10.1016/j.ast.2019.03.040
48.
Poll
,
D. I. A.
,
2009
, “
The Optimum Aeroplane and Beyond
,”
Aeronaut. J.
,
113
(
1141
), pp.
151
164
.10.1017/S000192400001143X
49.
Ames Research Center, NASA Technical Memorandum
,
1975
, “
NASA/Army XV-15 Tilt Rotor Research Aircraft Familiarization Document
,” NASA, Moffett Field, CA, Report No. NASA TM X-62, 407.
50.
Churchill
,
G. B.
, and
Dugan
,
D. C.
,
1982
, “
Simulation of the XV-15 Tilt Rotor Research Aircraft
,” NASA, Washington, DC, Report No. NASA TM 84222.
51.
Dugan
,
D. C.
,
Enhart
,
R. C.
, and
Schroers
,
L. G.
,
1980
, “
The XV-15 Tilt Rotor Research Aircraft
,” NASA, Washington, DC, Report No. NASA TM 81244.
52.
Koning
,
W. J. F.
,
Acree
,
C. W.
, and
Rajagopalan
,
G.
,
2016
, “
Using RotCFD to Predict Isolated XV-15 Rotor Performance
,”
AHS Technical Meeting on Aeromechanics Design for Vertical Lift
, San Francisco, CA, Jan.
20
22
.
53.
Drela
,
M.
,
2006
, “
QPROP Formulation
,” MIT Aero & Astro, Cambridge, MA.
54.
Mikkelson
,
D.
,
Blaha
,
B.
,
Mitchell
,
G.
, and
Wikete
,
J.
,
1977
, “
Design and Performance of Energy Efficient Propellers for Mach 0.8 Cruise
,” NASA, Washington, DC, Report No. NASA TM X-73612.
55.
Stefko
,
G. L.
, and
Jeracki
,
R. J.
,
1985
, “
Wind-Tunnel Results of Advanced High-Speed Propellers at Takeoff, Climb, and Landing Mach Numbers
,” NASA, Washington, DC, NASA Technical Memorandum 87030.
56.
Gur
,
O.
, and
Rosen
,
A.
,
2008
, “
Comparison Between Blade-Element Models of Propellers
,”
Aeronaut. J.
,
112
(
1138
), pp.
689
704
.10.1017/S0001924000002669
57.
Viterna
,
L. A.
, and
Janetzke
,
D. C.
,
1982
, “
Theoretical and Experimental Power From Large Horizontal-Axis Wind Turbines
,” NASA, Washington, DC, accessed Sept. 7, 2021, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19820025954.pdf
58.
Elliott
,
J. W.
,
Althoff
,
S. L.
,
Sailey
,
H. A.
,
Lase
,
V. E. E.
, and
El
,
M. C.
,
1988
, “
Inflow Measurement Made With a Laser Velocimeter on a Helicopter Model in Forward Flight—Vol I
,” NASA, Hampton, VA, Report No.NASA TM-100541.
59.
Elliott
,
J. W.
,
Althoff
,
S. L.
,
Sailey
,
H. A.
,
Lase
,
V. E. E.
, and
El
,
M. C.
,
1988
, “
Inflow Measurement Made With a Laser Velocimeter on a Helicopter Model in Forward Flight—Vol II
,” NASA, Hampton, VA, Technical Memorandum 88-B-006.
60.
Elliott
,
J. W.
,
Althoff
,
S. L.
,
Sailey
,
H. A.
,
Lase
,
V. E. E.
, and
El
,
M. C.
,
1988
, “
Inflow Measurement Made With a Laser Velocimeter on a Helicopter Model in Forward Flight—Vol III
,” NASA, Hampton, VA, Technical Memorandum 88-B-006.
61.
Berry
,
J. D.
, and
Althoff
,
S. L.
,
1989
, “
Computing Induced Velocity Perturbations Due to a Helicopter Fuselage in a Free Stream
,” NASA, Hampton, VA, Report No. NASA TM 4113—NASA 114 TR-89-B-00 1.
62.
Acree
,
C.
,
Peyran
,
R.
, and
Johnson
,
W.
,
2001
, “
Rotor Design Options for Improving XV-15 Whirl-Flutter Stability Margins
,”
J. Am. Helicopter Soc.
,
46
(
2
), pp.
87
95
.10.4050/JAHS.46.87
63.
Johnson
,
W.
, and
Branch
,
A.
,
2010
, “
NDARC — NASA Design and Analysis of Rotorcraft. Validation and Demonstration
,”
American Helicopter Society Aeromechanics Specialists' Conference
, San Francisco, CA, Jan.
20
22
.https://rotorcraft.arc.nasa.gov/Publications/files/JohnsonW2_AHS_2010.pdf
64.
Johnson
,
W.
,
1988
, “
A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics Vol. I: Theory Manual
,” Palo Alto, CA.
65.
Ballin
,
M. G.
, 1988, “
A High Fidelity Real-Time Simulation of a Small Turboshaft Engine
,”
NASA Ames Research Center, Moffett Field, CA, NASA Technical Memorandum 100991.
You do not currently have access to this content.