Abstract

The organic Rankine cycle (ORC) is low-grade heat recovery technology, for sources as diverse as geothermal, industrial, and vehicle waste heat. The working fluids used within these systems often display significant real-gas effects, especially in proximity of the thermodynamic critical point. Three-dimensional (3D) computational fluid dynamics (CFD) is commonly used for performance prediction and flow field analysis within expanders, but experimental validation with real gases is scarce within the literature. This paper therefore presents a dense-gas blowdown facility constructed at Imperial College London, for experimentally validating numerical simulations of these fluids. The system-level design process for the blowdown rig is described, including the sizing and specification of major components. Tests with refrigerant R1233zd(E) are run for multiple inlet pressures, against a nitrogen baseline case. CFD simulations are performed, with the refrigerant modeled by ideal gas, Peng–Robinson, and Helmholtz energy equations of state. It is shown that increases in fluid model fidelity lead to reduced deviation between simulation and experiment. Maximum and mean discrepancies of 9.59% and 8.12% in nozzle pressure ratio with the Helmholtz energy EoS are reported. This work demonstrates an over-prediction of pressure ratio and power output within commercial CFD packages, for turbomachines operating in non-ideal fluid environments. This suggests a need for further development and experimental validation of CFD simulations for highly non-ideal flows. The data contained within this paper are therefore of vital importance for the future validation and development of CFD methods for dense-gas turbomachinery.

References

1.
Macchi
,
E.
, and
Astolfi
,
M.
,
2016
,
Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications
, 1st ed.,
Woodhead Publishing
, Cambridge, UK.
2.
Colonna
,
P.
,
Casati
,
E.
,
Trapp
,
C.
,
Mathijssen
,
T.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
, and
Uusitalo
,
A.
,
2015
, “
Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications and an Outlook to the Future
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
100801
.10.1115/1.4029884
3.
Quoilin
,
S.
,
Broek
,
M. V. D.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
.10.1016/j.rser.2013.01.028
4.
Rahbar
,
K.
,
Mahmoud
,
S.
, and
Al-Dadah
,
R. K.
,
2014
, “
Mean-Line Modeling and CFD Analysis of a Miniature Radial Turbine for Distributed Power Generation Systems
,”
Int. J. Low-Carbon Technol.
,
11
(
2
), pp.
157
168
.https://doi.org/10.1093/ijlct/ctu028
5.
Robertson
,
M.
,
Costall
,
A.
,
Newton
,
P.
, and
Martinez-Botas
,
R.
,
2016
, “
Radial Turboexpander Optimization Over Discretized Heavy-Duty Test Cycles for Mobile Organic Rankine Cycle Applications
,”
ASME
Paper No. GT2016-56754.10.1115/GT2016-56754
6.
Pini
,
M.
,
Persico
,
G.
,
Casati
,
E.
, and
Dossena
,
V.
,
2013
, “
Preliminary Design of a Centrifugal Turbine for ORC Applications
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p. 042312.10.1115/1.4023122
7.
Legros
,
A.
,
Guillaume
,
L.
,
Diny
,
M.
, and
Lemort
,
V.
,
2015
, “
Modelling, Sizing and Testing a Scroll Expander for a Waste Heat Recovery Application on a Gasoline Engine
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
90
, p.
012065
.10.1088/1757-899X/90/1/012065
8.
Klonowicz
,
P.
,
Heberle
,
F.
,
Preißinger
,
M.
, and
Brüggemann
,
D.
,
2014
, “
Significance of Loss Correlations in Performance Prediction of Small Scale, Highly Loaded Turbine Stages Working in Organic Rankine Cycles
,”
Energy
,
72
, pp.
322
330
.10.1016/j.energy.2014.05.040
9.
Woodland
,
B.
,
Braun
,
J.
,
Eckhard
,
A.
, and
Horton
,
W.
,
2012
, “
Experimental Testing of an Organic Rankine Cycle With Scroll-Type Expander
,”
Publications of the Ray W. Herrick Laboratories
, West Lafayette, IN.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1052&context=herrick
10.
Li
,
L.
,
Ge
,
Y.
, and
Tassou
,
S.
,
2016
, “
Experimental Study on a Small-Scale R245fa Organic Rankine Cycle System for Low-Grade Thermal Energy Recovery
,” The Eighth International Conference on Applied Energy
(ICAE2016)
, Beijing, China, Oct. 8–11, pp.
1827
1832
.10.1016/j.egypro.2017.03.531
11.
Guillaume
,
L.
,
Legros
,
A.
,
Desideri
,
A.
, and
Lemort
,
V.
,
2017
, “
Performance of a Radial-Inflow Turbine Integrated in an ORC System and Designed for a WHR on Truck Application: An Experimental Comparison Between R245fa and R1233zd
,”
Appl. Energy
,
186
, pp.
408
422
.10.1016/j.apenergy.2016.03.012
12.
Reinker
,
F.
,
Kenig
,
E. Y.
,
Passmann
,
M.
, and
Aus der Wiesche
,
S.
,
2017
, “
Closed Loop Organic Wind Tunnel (CLOWT): Design, Components and Control System
,”
Energy Procedia
,
129
, pp.
200
207
.10.1016/j.egypro.2017.09.158
13.
Spinelli
,
A.
,
Cammi
,
G.
,
Zocca
,
M.
,
Gallarini
,
S.
,
Cozzi
,
F.
,
Gaetani
,
P.
,
Dossena
,
V.
, and
Guardone
,
A.
,
2017
, “
Experimental Observation of Non-Ideal Expanding Flows of Siloxane MDM Vapor for ORC Applications
,”
Energy Procedia
,
129
, pp.
1125
1132
.10.1016/j.egypro.2017.09.237
14.
Spinelli
,
A.
,
Pini
,
M.
,
Dossena
,
V.
,
Gaetani
,
P.
, and
Casella
,
F.
,
2013
, “
Design, Simulation and Construction of a Test Rig for Organic Vapors
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042304
.10.1115/1.4023114
15.
Colonna
,
P.
,
Guardone
,
A.
,
Nannan
,
N.
, and
Zamfirescu
,
C.
,
2008
, “
Design of the Dense Gas Flexible Asymmetric Shock Tube
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
034501
.10.1115/1.2844585
16.
Head
,
A.
,
De Servi
,
C.
,
Casati
,
E.
,
Pini
,
M.
, and
Colonna
,
P.
,
2016
, “
Preliminary Design of the Orchid: A Facility for Studying Non-Ideal Compressible Fluid Dynamics and Testing ORC Expanders
,”
ASME
Paper No. GT2016-56103.10.1115/GT2016-56103
17.
Alshammari
,
F.
,
Karvountzis-Kontakiotis
,
A.
,
Pesiridis
,
A.
, and
Minton
,
T.
,
2017
, “
Radial Expander Design for an Engine Organic Rankine Cycle Waste Heat Recovery System
,”
Energy Procedia
,
129
, pp.
285
292
.10.1016/j.egypro.2017.09.155
18.
Karvountzis
,
A.
,
Stanley-Watts
,
M.
,
Alshammari
,
F.
,
Pesyridis
,
A.
,
Franchetti
,
B.
,
Pesmazoglou
,
Y.
, and
Tocci
,
L.
,
2016
, “
Variable Geometry Turbine Performance for Off-Highway Vehicle Organic Rankine Cycle Waste Heat Recovery
,”
THIESEL Conference on Thermo and Fluid Dynamic Processes in Direct Injection Engines
, Valencia, Spain, Sept.
13
16
.https://www.researchgate.net/publication/315576415_Variable_Geometry_Turbine_Performance_for_Off-Highway_Vehicle_Organic_Rankine_Cycle_Waste_Heat_Recovery
19.
Khan
,
M.
,
Sardiwal
,
S.
,
Sharath
,
M.
, and
Chowdary
,
D.
,
2013
, “
Design of a Supersonic Nozzle Using Method of Characteristics
,”
Int. J. Eng. Res. Technol.
,
2
(
11
), pp.
19
24
.https://www.ijert.org/research/design-of-a-supersonic-nozzle-using-method-of-characteristics-IJERTV2IS110026.pdf
20.
Anderson
,
J.
,
2018
,
Modern Compressible Flow: With Historical Perspective
, 3rd ed.,
McGraw-Hill
, New York.
21.
Dodson
,
C.
,
2018
, “
Supersonic Nozzle Design Tool
,” Mathworks Central File Exchange Listing 43212, Mathworks, Natick, MA.
22.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
,
2007
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP
,”
National Institute of Standards and Technology
, Gaithersburg, MD, Standard.https://www.nist.gov/publications/nist-standard-reference-database-23-reference-fluid-thermodynamic-and-transport-0
23.
Antonio Bufi
,
E.
, and
Cinnella
,
P.
,
2017
, “
Design Methodology for Supersonic ORC Turbine Blades
,”
23e Congres Francais de Mecanique
, Vol.
11
, Lille, France, Aug. 28–Sept. 1.https://www.researchgate.net/publication/321051429_Design_methodology_for_supersonic_ORC_turbine_blades
24.
Wheeler
,
A. P. S.
, and
Ong
,
J.
,
2013
, “
The Role of Dense Gas Dynamics on ORC Turbine Performance
,”
ASME
Paper No. GT2013-95858
. 10.1115/GT2013-95858
25.
Incropera
,
F.
, and
DeWitt
,
P.
,
1996
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
Wiley
, Hoboken, NJ.
26.
Mondejar
,
M. E.
,
McLinden
,
M. O.
, and
Lemmon
,
E. W.
,
2015
, “
Thermodynamic Properties of Trans-1-Chloro-3,3,3-Trifluoropropene (R1233zd(E)): Vapor Pressure, (p, ρ, t) Behavior, and Speed of Sound Measurements, and Equation of State
,”
J. Chem. Eng. Data
,
60
(
8
), pp.
2477
2489
.10.1021/acs.jced.5b00348
27.
Hulse
,
R.
,
Basu
,
R. S
,
Singh
,
R.
, and
Thomas
,
R.
,
2012
, “
Physical Properties of HCFO-1233zd(E)
,”
J. Chem. Eng. Data
,
57
(
12
), pp.
3581
3586
.10.1021/je300776s
28.
Technology Strategy Board,
2013
, “
Results of Competition IDP 9 Technology Challenge in Low Carbon Vehicles
,”
Technology Strategy Board
, Swindon, UK.https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/534237/IDP9_-_Technology_challenge_in_low_carbon_vehicles_-_competition_results.pdf
You do not currently have access to this content.