Abstract

Due to the manufacturing error and in-service degradation of gas turbines, there is always a deviation between the actual geometry and the design geometry. This geometric deviation has a prominent uncertainty characteristic, resulting in a dispersion of the gas turbine performance and thereby reducing the manufacturing qualification rate and service life. As the performance and reliability requirements of gas turbines increase continually, more and more attention has been paid to the quantitative study of the effect of the geometric uncertainty on performance. In this paper, the main sources and features of gas turbine geometric uncertainty are reviewed first. Then, the basic principles, characteristics, and application in gas turbines of different uncertainty quantification (UQ) methods are reviewed. Finally, the progress, challenges, and prospects for correlational research are summarized in the conclusion.

References

1.
Schnell
,
R.
,
Lengyel-Kampmann
,
T.
, and
Nicke
,
E.
,
2014
, “
On the Impact of Geometric Variability on Fan Aerodynamic Performance, Unsteady Blade Row Interaction, and Its Mechanical Characteristics
,”
ASME J. Turbomach.
,
136
(
9
), p.
091005
.10.1115/1.4027218
2.
Garzon
,
V. E.
,
2003
, “
Probabilistic Aerothermal Design of Compressor Airfoils
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://acdl.mit.edu/garzon_thesis.pdf
3.
Lamb
,
C. T.
, and
Darmofal
,
D. L.
,
2004
, “
Performance-Based Geometric Tolerancing of Compressor Blades
,”
ASME
Paper No. GT2004-53592.10.1115/GT2004-53592
4.
Montomoli
,
F.
,
Carnevale
,
M.
,
D'Ammaro
,
A.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2019
,
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer
, Cham, Switzerland.
5.
Walters
,
R. W.
, and
Huyse
,
L.
,
2002
, “
Uncertainty Analysis for Fluid Mechanics With Applications
,” NASA, Hampton, VA, Report No.
NASA CR-2002-211449
.https://www.researchgate.net/publication/235082312_Uncertainty_Analysis_for_Fluid_Mechanics_with_Applications
6.
Maître
,
O. L.
, and
Knio
,
O. M.
,
2010
,
Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics
,
Springer
, Dordrecht, The Netherlands.
7.
Najm
,
H. N.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
35
52
.10.1146/annurev.fluid.010908.165248
8.
Giebmanns
,
A.
,
Backhaus
,
J.
,
Frey
,
C.
, and
Schnell
,
R.
,
2013
, “
Compressor Leading Edge Sensitivities and Analysis With an Adjoint Flow Solver
,”
ASME
Paper No. GT2013-94427.10.1115/GT2013-94427
9.
Allaire
,
G.
,
2015
, “
A Review of Adjoint Methods for Sensitivity Analysis, Uncertainty Quantification and Optimization in Numerical Codes
,”
Ingénieurs de L'Automobile
,
836
(July 2015), pp.
33
36
.https://hal.archives-ouvertes.fr/hal-01242950
10.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
2004
,
Gas Turbine Performance
,
Blackwell Science Ltd, Oxford, UK.
11.
Mavromihales
,
M.
,
Mason
,
J.
, and
Weston
,
W.
,
2003
, “
A Case of Reverse Engineering for the Manufacture of Wide Chord Fan Blades (WCFB) Used in Rolls Royce Aero Engines
,”
J. Mater. Process. Technol.
,
134
(
3
), pp.
279
286
.10.1016/S0924-0136(02)01108-1
12.
Ramerth
,
D. L.
,
MirzaMoghadam
,
A. V.
,
Kiratsingh
,
A.
, and
Banda
,
G.
,
2011
, “
A Probabilistic Secondary Flow System Design Process for Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092502
.10.1115/1.4002829
13.
Zamboni
,
G.
, and
Xu
,
L.
,
2012
, “
Fan Root Aerodynamics for Large Bypass Gas Turbine Engines: Influence on the Engine Performance and 3D Design
,”
ASME J. Turbomach.
,
134
(
6
), p.
061017
.10.1115/1.4006286
14.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gummer
,
V.
,
2012
, “
Impact of Manufacturing Variability and Nonaxisymmetry on High-Pressure Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032504
.10.1115/1.4004404
15.
Marson
,
E.
,
1992
, “
Effect of Manufacturing Deviations on Performance of Axial Flow Compressor Blading
,”
ASME
Paper No. 92-GT-326.10.1115/92-GT-326
16.
Elmstrom
,
M. E.
,
Millsaps
,
K. T.
,
Hobson
,
G. V.
, and
Patterson
,
J. S.
,
2011
, “
Impact of Nonuniform Leading Edge Coatings on the Aerodynamic Performance of Compressor Airfoils
,”
ASME J. Turbomach.
,
133
(
4
), p.
041004
.10.1115/1.3213550
17.
Wheeler
,
A. P. S.
,
Sofia
,
A.
, and
Miller
,
R. J.
,
2009
, “
The Effect of Leading-Edge Geometry on Wake Interactions in Compressors
,”
ASME J. Turbomach.
,
131
(
4
), p.
041013
.10.1115/1.3104617
18.
Klapproth
,
J. F.
,
1950
, “
Approximate Relative-Total-Pressure Losses of an Infinite Cascade of Supersonic Blades With Finite Leading-Edge Thickness
,” NACA, Cleveland, OH, Report No.
NACA RM E9L21
.https://digital.library.unt.edu/ark:/67531/metadc58537/
19.
Carter
,
A.
, and
Applied Mechanics Group,
1961
, “
Blade Profiles for Axial-Flow Fans, Pumps, Compressors, etc.
,”
Proc. Inst. Mech. Eng.
,
175
(
1
), pp.
775
806
.10.1243/PIME_PROC_1961_175_051_02
20.
Reid
,
L.
, and
Urasek
,
D. C.
,
1973
, “
Experimental Evaluation of the Effects of a Blunt Leading Edge on the Performance of a Transonic Rotor
,”
ASME J. Eng. Gas Turbines Power
,
95
(
3
), pp.
199
204
.10.1115/1.3445723
21.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2011
, “
Compressor Leading Edge Spikes: A New Performance Criterion
,”
ASME J. Turbomach.
,
133
(
2
), p.
021006
.10.1115/1.4000567
22.
Herrig
,
L. J.
,
Emery
,
J. C.
, and
Erwin
,
J. R.
,
1951
, “
Effect of Section Thickness and Trailing-Edge Radius on the Performance of NACA 65-Series Compressor Blades in Cascade at Low Speeds
,” NACA, Hampton, VA, Report No.
NACA RM L5 LJ16
.https://digital.library.unt.edu/ark:/67531/metadc59078/
23.
Jia
,
Z. W.
,
Jiang
,
T.
, and
Li
,
Y. H.
,
2002
, “
Measurement of Dynamic Clearance Between Compressor Blade Tip and Case
,”
Aviation Precis. Manuf. Technol.
,
38
(
4
), pp.
44
46
.http://en.cnki.com.cn/Article_en/CJFDTotal-HJZJ200204013.htm
24.
Wang
,
X.
,
Pan
,
H. W.
,
Zhou
,
Y. Z.
, and
Liu
,
Z. F.
,
2004
, “
Blade-Tip Clearance Analysis of a Gas Turbine Compressor
,”
J. Vib. Eng.
,
17
(
s1
), pp.
58
60
.
25.
Smith
,
L. H.
,
1970
, “
Casing Boundary Layers in Multistage Axial Compressors
,”
Flow Res. Blading
, A. L. S. Dzung, ed., Elsevier, Amsterdam, The Netherlands, pp.
275
304
.
26.
Sakulkaew
,
S.
,
Tan
,
C. S.
,
Donahoo
,
E.
,
Cornelius
,
C.
, and
Montgomery
,
M.
,
2013
, “
Compressor Efficiency Variation With Rotor Tip Gap From Vanishing to Large Clearance
,”
ASME J. Turbomach.
,
135
(
3
), p.
031030
.10.1115/1.4007547
27.
Zheng
,
X.
, and
Yang
,
H.
,
2016
, “
Influence of Tip Clearance on the Performance and Matching of Multistage Axial Compressors
,”
ASME
Paper No. GT2016-56232.10.1115/GT2016-56232
28.
Vo
,
H. D.
,
2001
, “
Role of Tip Clearance Flow on Axial Compressor Stability
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.http://hdl.handle.net/1721.1/8104
29.
Baghdadi
,
S.
,
1996
, “
Modeling Tip Clearance Effects in Multistage Axial Compressors
,”
ASME J. Turbomach.
,
118
(
4
), pp.
697
705
.10.1115/1.2840925
30.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.10.1115/1.3066315
31.
Moses
,
J. J.
, and
Serovy
,
G. K.
,
1951
, “
Effect of Blade-Surface Finish on Performance of a Single-Stage Axial-Flow Compressor
,” NASA, Cleveland, OH, Report No.
NASA RME51c09
.https://ntrs.nasa.gov/search.jsp?R=19930086631
32.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.10.1115/1.1791281
33.
Debruge
,
L. L.
,
1980
, “
The Aerodynamic Significance of Fillet Geometry in Turbocompressor Blade Rows
,”
ASME J. Eng. Power
,
102
(
4
), pp.
984
993
.10.1115/1.3230371
34.
Hoeger
,
M.
,
Schmidt-Eisenlohr
,
U.
,
Gomez
,
S.
,
Sauer
,
H.
, and
Müller
,
R.
,
2002
, “
Numerical Simulation of the Influence of a Fillet and a Bulb on the Secondary Flow in a Compressor Cascade
,”
Task Q.
,
6
(
1
), pp.
25
37
.https://www.researchgate.net/publication/228803573
35.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2012
, “
The Impact of Real Geometries on Three-Dimensional Separations in Compressors
,”
ASME J. Turbomach.
,
134
(
2
), p.
021007
.10.1115/1.4002990
36.
Wisler
,
D. C.
,
1985
, “
Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
354
363
.10.1115/1.3239730
37.
Moeckel
,
C. W.
,
Darmofal
,
D. L.
,
Kingston
,
T. R.
, and
Norton
,
R. J.
,
2007
, “
Toleranced Designs of Cooled Turbine Blades Through Probabilistic Thermal Analysis of Manufacturing Variability
,”
ASME
Paper No. GT2007-28009.10.1115/GT2007-28009
38.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Comput. Fluids
,
46
(
1
), pp.
362
368
.10.1016/j.compfluid.2010.11.031
39.
Watt
,
R. M.
,
Allen
,
J. L.
,
Baines
,
N. C.
,
Simons
,
J. P.
, and
George
,
M.
,
1988
, “
A Study of the Effects of Thermal Barrier Coating Surface Roughness on the Boundary Layer Characteristics of Gas Turbine Aerofoils
,”
ASME J. Turbomach.
,
110
(
1
), pp.
88
93
.10.1115/1.3262172
40.
Jovanović
,
M. B.
,
De Lange
,
H. C.
, and
Van Steenhoven
,
A. A.
,
2008
, “
Effect of Hole Imperfection on Adiabatic Film Cooling Effectiveness
,”
Int. J. Heat Fluid Flow
,
29
(
2
), pp.
377
386
.10.1016/j.ijheatfluidflow.2007.11.008
41.
Allmen
,
M.
, and
Blatter
,
A.
,
1995
,
Laser-Beam Interactions With Materials: Physical Principles and Applications
,
Springer
, Berlin.
42.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2018
, “
Effectiveness Measurements of Additively Manufactured Film Cooling Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011009
.10.1115/1.4038182
43.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.10.1115/1.4034555
44.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), pp.
81
96
.10.1115/1.3072494
45.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propulsion Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
46.
Meher-Homji
,
C. B.
,
Chaker
,
M. A.
, and
Motiwala
,
M.
,
2001
, “
Gas Turbine Performance Deterioration
,”
Proceedings of the 30th Turbomachinery Symposium
, Turbomachinery Laboratories, Texas A&M University, Houston, TX, Sept. 17–20, pp.
139
176
.10.21423/R19Q1P
47.
Sallee
,
G. P.
,
Kruckenberg
,
H. D.
, and
Toomey
,
E. H.
,
1975
, “
Analysis of Turbofan Engine Performance Deterioration and Proposed Follow-on Tests
,” NASA, CleveIand, OH, Report No.
NASA CR-134769
.https://ntrs.nasa.gov/search.jsp?R=19750018937
48.
Ju
,
Y.
, and
Zhang
,
C.
,
2016
, “
Robust Design Optimization Method for Centrifugal Impellers Under Surface Roughness Uncertainties Due to Blade Fouling
,”
Chin. J. Mech. Eng.
,
29
(
2
), pp.
301
314
.10.3901/CJME.2015.1222.153
49.
Qin
,
R.
,
Ju
,
Y.
,
Wang
,
Y.
, and
Zhang
,
C.
,
2016
, “
Flow Analysis and Uncertainty Quantification of a 2D Compressor Cascade With Dirty Blades
,”
ASME
Paper No. GT2016-56915.10.1115/GT2016-56915
50.
Hamed
,
A.
,
Tabakoff
,
W. C.
, and
Wenglarz
,
R. V.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propulsion Power
,
22
(
2
), pp.
350
360
.10.2514/1.18462
51.
Ghenaiet
,
A.
,
2012
, “
Study of Sand Particle Trajectories and Erosion Into the First Compression Stage of a Turbofan
,”
ASME J. Turbomach.
,
134
(
5
), p.
051025
.10.1115/1.4004750
52.
Ghenaiet
,
A.
,
Tan
,
S. C.
, and
Elder
,
R. L.
,
2005
, “
Prediction of an Axial Turbomachine Performance Degradation Due to Sand Ingestion
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
219
(
4
), pp.
273
287
.10.1243/095765005X7592
53.
Roberts
,
W. B.
,
1984
, “
Axial Compressor Performance Restoration by Blade Profile Control
,”
ASME
Paper No. 84-GT-232.10.1115/84-GT-232
54.
Mirzamoghadam
,
A. V.
,
2008
, “
Gas Turbine Plant Thermal Performance Degradation Assessment
,”
ASME
Paper No. GT2008-50032.10.1115/GT2008-50032
55.
Meher-Homji
,
C. B.
,
Focke
,
A. B.
, and
Wooldridge
,
M. B.
,
1989
, “
Fouling of Axial Flow Compressors-Causes, Effects, Detection, and Control
,”
Proceedings of the 18th Turbomachinery Symposium
,
Turbomachinery Laboratories
, Texas A&M University, Houston, TX, Sept. 18–21, pp.
55
76
.10.21423/R1ZW9B
56.
Bons
,
J. P.
, Taylor, R. P., McClain, S. T., and Rivir, R. B.,
2001
, “The Many Faces of Turbine Surface Roughness,”
ASME J. Turbomach.
, 123(4), pp.
739
748
.10.1115/1.1400115
57.
Kurz
,
R.
, and
Brun
,
K.
,
2001
, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
70
77
.10.1115/1.1340629
58.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.10.1115/1.2836561
59.
Mezheritsky
,
A. D.
, and
Sudarev
,
A. V.
,
1990
, “
The Mechanism of Fouling and the Cleaning Technique in Application to Flow Parts of the Power Generation Plant Compressors
,”
ASME
Paper No. 90-GT-103.10.1115/90-GT-103
60.
Caguiat
,
D. E.
,
2003
, “
Rolls Royce/Allison 501-K Gas Turbine Antifouling Compressor Coatings Evaluation
,”
ASME J. Turbomach.
,
125
(
3
), pp.
482
488
.10.1115/1.1573665
61.
Bammert
,
K.
, and
Sandstede
,
H.
,
1972
, “
Measurements Concerning the Influence of Surface Roughness and Profile Changes on the Performance of Gas Turbines
,”
ASME J. Eng. Power
,
94
(
3
), pp.
207
213
.10.1115/1.3445674
62.
Kellersmann
,
A.
,
Weiler
,
S.
,
Bode
,
C.
,
Friedrichs
,
J.
,
Städing
,
J.
, and
Ramm
,
G.
,
2018
, “
Surface Roughness Impact on Low-Pressure Turbine Performance Due to Operational Deterioration
,”
ASME J. Eng. Gas Turbines Power
,
140
(
6
), p.
062601
.10.1115/1.4038246
63.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Shanov
,
V.
,
1998
, “
Blade Deterioration in a Gas Turbine Engine
,”
Int. J. Rotating Mach.
,
4
(
4
), pp.
233
241
.10.1155/S1023621X98000190
64.
Goward
,
G. W.
,
1986
, “
Low-Temperature Hot Corrosion in Gas Turbines: A Review of Causes and Coatings Therefor
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
421
425
.10.1115/1.3239921
65.
Dundas
,
R. E.
,
1986
, “A Study of the Effect of Deterioration on Compressor Surge Margin in Constant Speed, Single Shaft Gas Turbines,”
ASME
Paper No. 86-GT177.10.1115/86-GT-177
66.
Montomoli
,
F.
, and
Massini
,
M.
,
2013
, “
Gas Turbines and Uncertainty Quantification: Impact of PDF Tails on UQ Predictions, the Black Swan
,”
ASME
Paper No. GT2013-94306.10.1115/GT2013-94306
67.
Caflisch
,
R. E.
,
1998
, “
Monte Carlo and quasi-Monte Carlo Methods
,”
Acta Numer.
,
7
, pp.
1
49
.10.1017/S0962492900002804
68.
Kumar
,
A.
,
2006
, “
Robust Design Methodologies: Application to Compressor Blades
,”
Ph.D. thesis
,
University of Southampton
, Southampton, UK.http://eprints.soton.ac.uk/id/eprint/72037
69.
Eldred
,
M. S.
,
Giunta
,
A. A.
,
van Bloemen Waanders
,
B. G.
,
Wojtkiewicz
,
S. F.
,
Hart
,
W. E.
, and
Alleva
,
M. P.
,
2006
, “
DAKOTA, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2006-6337.
70.
Wang
,
Q.
,
2009
, “
Uncertainty Quantification for Unsteady Fluid Flow Using Adjoint-Based Approaches
,” Stanford University, Stanford, CA.
71.
Putko
,
M.
,
Taylor Iii
,
A.
,
Newman
,
P.
, and
Green
,
L.
,
2001
, “
Approach for Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives
,”
AIAA
Paper No. 2001-2528.10.2514/2001-2528
72.
Bose
,
D.
,
Wright
,
M. J.
, and
Palmer
,
G. E.
,
2006
, “
Uncertainty Analysis of Laminar Aeroheating Predictions for Mars Entries
,”
J. Thermophys. Heat Transfer
,
20
(
4
), pp.
652
662
.10.2514/1.20993
73.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
, Hoboken, NJ.
74.
He
,
X.
, and
Zheng
,
X.
,
2017
, “
Performance Improvement of Transonic Centrifugal Compressors by Optimization of Complex Three-Dimensional Features
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
231
(
14
), pp.
2723
2738
.10.1177/0954410016673395
75.
Constantine
,
P. G.
,
Dow
,
E.
, and
Wang
,
Q.
,
2014
, “
Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces
,”
SIAM J. Sci. Comput.
,
36
(
4
), pp.
A1500
A1524
.10.1137/130916138
76.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.10.2307/2371268
77.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
78.
Ghanem
,
R. G.
, and
Spanos
,
P. D.
,
2003
,
Stochastic Finite Elements: A Spectral Approach
,
Courier Corporation
, Mineola, New York.
79.
Ghanem
,
R.
, and
Spanos
,
P. D.
,
1990
, “
Polynomial Chaos in Stochastic Finite Elements
,”
ASME J. Appl. Mech.
,
57
(
1
), pp.
197
202
.10.1115/1.2888303
80.
Debusschere
,
B. J.
,
Najm
,
H. N.
,
Pébay
,
P. P.
,
Knio
,
O. M.
,
Ghanem
,
R. G.
, and
Le Maı⁁ Tre
,
O. P.
,
2004
, “
Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
698
719
.10.1137/S1064827503427741
81.
Parussini
,
L.
, and
Pediroda
,
V.
,
2007
, “
Fictitious Domain With Least-Squares Spectral Element Method to Explore Geometric Uncertainties by Non-Intrusive Polynomial Chaos Method
,”
Comput. Model. Eng. Sci.
,
22
(
1
), p.
416
.http://www.techscience.com/CMES/v22n1/25048/pdf
82.
Loeven
,
G. J. A.
, and
Bijl
,
H.
,
2008
, “
Probabilistic Collocation Used in a Two-Step Approach for Efficient Uncertainty Quantification in Computational Fluid Dynamics
,”
Comput. Model. Eng. Sci.
,
36
(
3
), pp.
193
212
.10.3970/cmes.2008.036.193
83.
Ahlfeld
,
R.
, and
Montomoli
,
F.
,
2017
, “
A Single Formulation for Uncertainty Propagation in Turbomachinery: SAMBA PC
,”
ASME J. Turbomach.
,
139
(
11
), p.
111007
.10.1115/1.4037362
84.
Rubinstein
,
R.
, and
Choudhari
,
M.
,
2005
, “
Uncertainty Quantification for Systems With Random Initial Conditions Using Wiener-Hermite Expansions
,”
Stud. Appl. Math.
,
114
(
2
), pp.
167
188
.10.1111/j.0022-2526.2005.01543.x
85.
Drela
,
M.
, and
Youngren
,
H. A.
,
1998
, “
User's Guide to MISES 2.53
,” Massachusetts Institute of Technology, Cambridge, MA.
86.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gummer
,
V.
,
2010
, “
Probabilistic CFD Simulation of a High-Pressure Compressor Stage Taking Manufacturing Variability Into Account
,”
ASME
Paper No. GT2010-22484.10.1115/GT2010-22484.
87.
Duffner
,
J. D.
,
2008
, “
The Effects of Manufacturing Variability on Turbine Vane Performance
,”
Aerospace Computational Design Laboratory
, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA.http://hdl.handle.net/1721.1/57599
88.
Tang
,
X.
,
Luo
,
J.
, and
Liu
,
F.
,
2018
, “
Adjoint Aerodynamic Optimization of a Transonic Fan Rotor Blade With a Localized Two-Level Mesh Deformation Method
,”
Aerosp. Sci. Technol.
,
72
, pp.
267
277
.10.1016/j.ast.2017.11.015
89.
Wunsch
,
D.
,
Hirsch
,
C.
,
Nigro
,
R.
, and
Coussement
,
G.
,
2015
, “
Quantification of Combined Operational and Geometrical Uncertainties in Turbo-Machinery Design
,”
ASME
Paper No. GT2015-43399.10.1115/GT2015-43399
90.
D'Ammaro
,
A.
, and
Montomoli
,
F.
,
2013
, “
Uncertainty Quantification and Film Cooling
,”
Comput. Fluids
,
71
, pp.
320
326
.10.1016/j.compfluid.2012.10.021
91.
Ghisu
,
T.
,
Parks
,
G. T.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
,
2010
, “
Adaptive Polynomial Chaos for Gas Turbine Compression Systems Performance Analysis
,”
AIAA J.
,
48
(
6
), pp.
1156
1170
.10.2514/1.J050012
You do not currently have access to this content.