Abstract

In this paper, with the help of partial similarity principle, aerodynamic performance of a centrifugal compressor in a turbocharger unit is analyzed and improved based on a low-speed large-scaled model. In order to achieve flow similarity between the scaled compressor and the prototype, tip clearance and diffuser outlet diameter have been modified further. It is observed from the numerical results that the relative error between the scaled compressor and the prototype is less than 0.8%. It means that the flow field of the scaled compressor is similar to the prototype though the Reynolds number is neglected during the scaling process. Furthermore, the large-scaled impeller has been improved by analyzing the numerical results, and then, the improved impeller is scaled down back to the smaller one by using the partial similarity principle, which geometric dimensions have the same level as those of the prototype but performance is improved obviously. Meanwhile, the experiment results are used to validate the method.

References

1.
Jonna
,
T.
,
Ahti
,
J.
,
Aki
,
G.
,
Tore
,
F.
, and
Jari
,
B.
,
2018
, “
Loss Development Analysis of a Micro-Scale Centrifugal Compressor
,”
Energy Convers. Manage.
,
166
(
2018
), pp.
297
307
.10.1016/j.enconman.2018.04.014
2.
Zhang
,
C.
,
Hu
,
J.
,
Wang
,
Z.
, and
Gao
,
X.
,
2014
, “
Design Work of a Compressor Stage Through High-to-Low Speed Compressor Transformation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
064501
.10.1115/1.4026520
3.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts ETI
,
Wilder, VT
.
4.
Seppo
,
A.
,
2011
,
Principles of Turbomachinery
,
Wiley
,
Hoboken, NJ
.
5.
Dearney
,
D.
,
Punch
,
J.
, and
Grimes
,
R.
,
2009
, “
An Experimental Investigation of the Flow Fields Within Geometrically Similar Miniature-Scale Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
131
(
10
), p.
101101
.10.1115/1.3176985
6.
Wang
,
Z. T.
,
Bai
,
B.
,
Li
,
S. Y.
,
Yang
,
Q. C.
, and
Wang
,
M. Q.
,
2014
, “
Compressor Performance Curve Extrapolation Method Based on the Similarity Theory
,”
Appl. Mech. Mater.
,
672–674
, pp.
1545
1549
.10.4028/www.scientific.net/AMM.672-674.1545
7.
Matthias
,
S.
, and
Reza
,
S.
,
2005
, “
Influence of Geometric Scaling on the Stability and Range of a Turbocharger Centrifugal Compressor
,”
ASME
Paper No. GT2005-68713.10.1115/GT2005-68713
8.
Asads
,
M.
,
William
,
S.
, and
George
,
K.
, Jr.
,
2003
, “
Reconsideration of the Fan Scaling Laws—Part I: Theory
,”
ASME
Paper No. FEDSM2003-45414.10.1115/FEDSM2003-45414
9.
Asad
,
M.
,
William
,
S.
, and
George
,
K.
, Jr.
,
2003
, “
Reconsideration of the Fan Scaling Laws—Part II: Applications
,”
ASME
Paper No. FEDSM2003-45418.10.1115/FEDSM2003-45418
10.
Ma
,
Y.
, and
Xi
,
G.
,
2010
, “
Effects of Reynolds Number and Heat Transfer on Scaling of a Centrifugal Compressor Impeller
,”
ASME
Paper No. GT2010-23372.10.1115/GT2010-23372
11.
Zhu
,
C.
, and
Qin
,
G.
,
2012
, “
Performance Prediction of Centrifugal Compressor Based on Performance Test, Similarity Conversion and CFD Simulation
,”
Int. J. Fluid Mach. Syst.
,
5
(
1
), pp.
38
48
.10.5293/IJFMS.2012.5.1.038
12.
Florian
,
F.
,
Peter
,
J.
, and
Hoiger
,
F.
,
2016
, “
On the Scaling of Aeroelastic Parameters for High Pressure Applications in Centrifugal Compressors
,”
ASME
Paper No. GT2016-57409.10.1115/GT2016-57409
13.
Dufour
,
G.
,
Carbonneau
,
X.
,
Cazalbou
,
J.
, and
Chassaing
,
P.
,
2006
, “
Practical Use of Similarity and Scaling Laws for Centrifugal Compressor Design
,”
ASME
Paper No. GT2006-91227.10.1115/GT2006-91227
14.
Wisler
,
D. C.
,
1985
, “
Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
354
363
.10.1115/1.3239730
15.
Clemen
,
C.
,
Schrapp
,
H.
,
GüMmer
,
V.
,
MüLler
,
R.
,
KüNzelmann
,
M.
, and
Vogeler
,
K.
,
2008
, “
Design of a Highly-Loaded Four-Stage Low-Speed Research Compressor
,”
ASME
Paper No. GT2008-50254.10.1115/GT2008-50254
16.
Zhu
,
N. G.
,
Xu
,
L.
, and
Chen
,
M. Z.
,
1992
, “
Similarity Transformation for Compressor Blading
,”
ASME J. Turbomach.
,
114
(
3
), pp.
561
568
.10.1115/1.2929180
17.
Zhang
,
C.
,
Wang
,
Z. Q.
,
Yin
,
C.
,
Yan
,
W.
, and
Hu
,
J.
,
2014
, “
Low-Speed Model Testing Studies for an Exit Stage of High Pressure Compressor
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
112603
.10.1115/1.4027637
18.
Sherbina
,
A.
,
Klimov
,
I. V.
, and
Moroz
,
L.
,
2017
, “
Improved Model for Meanline Analysis of Centrifugal Compressors With a Large Tip Clearance
,”
AIAA
Paper No. 2017-4730.10.2514/6.2017-4730
19.
Wang
,
H. L.
,
Xi
,
G.
,
Li
,
J. Y.
, and
Yuan
,
M. J.
,
2011
, “
Effect of the Tip Clearance Variation on the Performance of a Centrifugal Compressor With Considering Impeller Deformation
,”
Proc. Inst. Mech. Eng., Part A
,
225
(
8
), pp.
1143
1155
.10.1177/0957650911416914
20.
Asad
,
M. S.
,
2001
, “
Centrifugal Fans: Similarity, Scaling Laws, and Fan Performance
,”
Ph.D. thesis
, State University of New York at Buffalo, Buffalo, NY, p.
3010865
.http://www.turbulence-online.com/Publications/Theses/Sardar01.pdf
21.
Schetz
,
J. A.
, and
Fuhs
,
A. E.
,
1996
,
Handbook of Fluid Dynamics and Fluid Machinery
,
Wiley
,
New York
.
22.
Bourgeois
,
J. A.
,
Martinuzzi
,
R. J.
,
Savory
,
E.
,
Zhang
,
C.
, and
Roberts
,
D. A.
,
2011
, “
Assessment of Turbulence Model Predictions for an Aero-Engine Centrifugal Compressor
,”
ASME J. Turbomach.
,
131
(
1
), p.
011025
.10.1115/1.4001136
23.
Zheng
,
X.
,
Liu
,
A.
, and
Sun
,
Z.
,
2017
, “
Investigation of the Instability Mechanisms in a Turbocharger Centrifugal Compressor With a Vaneless Diffuser by Means of Unsteady Simulation
,”
Proc. Inst. Mech. Eng., Part D
,
231
(
11
), pp.
1558
1567
.10.1177/0954407016677435
24.
Mashimo
,
T.
,
Watanabe
,
I.
, and
Ariga
,
I.
,
1979
, “
Effects of Fluid Leakage on Performance of a Centrifugal Compressor
,”
ASME J. Eng. Gas Turbines Power
,
101
(
3
), pp.
337
342
.10.1115/1.3446581
25.
Tiainen
,
J.
,
Jaatinen-Varri
,
A.
,
Gronman
,
A.
,
Turunen-Saaresti
,
T.
, and
Backman
,
J.
,
2018
, “
Effect of Freestream Velocity Definition on Boundary Layer Thickness and Losses in Centrifugal Compressors
,”
ASME J. Turbomach.
,
140
(
5
), p.
051003
.10.1115/1.4038872
26.
Swain
,
D.
, and
Engeda
,
A.
,
2014
, “
Effect of Impeller Trimming on the Performance of a 5.5:1 Pressure Ratio Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
6
), pp.
27
34
.10.1177/0957650914532265
27.
Xie
,
H.
,
Song
,
M. R.
,
Liu
,
X. L.
,
Yang
,
B.
, and
Gu
,
C. G.
,
2018
, “
Research on the Simplified Design of a Centrifugal Compressor Impeller Based on Meridional Plane Modification
,”
Appl. Sci.
,
8
(
8
), p.
1339
.10.3390/app8081339
28.
Zheng
,
X.
,
Huang
,
Q.
, and
Liu
,
A.
,
2015
, “
Loss Mechanisms and Flow Control for Improved Efficiency of a Centrifugal Compressor at High Inlet Prewhirl
,”
ASME J. Turbomach.
,
130
(
10
), p.
101011
.10.1115/1.4033216
You do not currently have access to this content.